Cargando…
Long-Read Metagenome-Assembled Genomes Improve Identification of Novel Complete Biosynthetic Gene Clusters in a Complex Microbial Activated Sludge Ecosystem
Microorganisms produce a wide variety of secondary/specialized metabolites (SMs), the majority of which are yet to be discovered. These natural products play multiple roles in microbiomes and are important for microbial competition, communication, and success in the environment. SMs have been our ma...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9765116/ https://www.ncbi.nlm.nih.gov/pubmed/36445112 http://dx.doi.org/10.1128/msystems.00632-22 |
_version_ | 1784853415449329664 |
---|---|
author | Sánchez-Navarro, Roberto Nuhamunada, Matin Mohite, Omkar S. Wasmund, Kenneth Albertsen, Mads Gram, Lone Nielsen, Per H. Weber, Tilmann Singleton, Caitlin M. |
author_facet | Sánchez-Navarro, Roberto Nuhamunada, Matin Mohite, Omkar S. Wasmund, Kenneth Albertsen, Mads Gram, Lone Nielsen, Per H. Weber, Tilmann Singleton, Caitlin M. |
author_sort | Sánchez-Navarro, Roberto |
collection | PubMed |
description | Microorganisms produce a wide variety of secondary/specialized metabolites (SMs), the majority of which are yet to be discovered. These natural products play multiple roles in microbiomes and are important for microbial competition, communication, and success in the environment. SMs have been our major source of antibiotics and are used in a range of biotechnological applications. In silico mining for biosynthetic gene clusters (BGCs) encoding the production of SMs is commonly used to assess the genetic potential of organisms. However, as BGCs span tens to over 200 kb, identifying complete BGCs requires genome data that has minimal assembly gaps within the BGCs, a prerequisite that was previously only met by individually sequenced genomes. Here, we assess the performance of the currently available genome mining platform antiSMASH on 1,080 high-quality metagenome-assembled bacterial genomes (HQ MAGs) previously produced from wastewater treatment plants (WWTPs) using a combination of long-read (Oxford Nanopore) and short-read (Illumina) sequencing technologies. More than 4,200 different BGCs were identified, with 88% of these being complete. Sequence similarity clustering of the BGCs implies that the majority of this biosynthetic potential likely encodes novel compounds, and few BGCs are shared between genera. We identify BGCs in abundant and functionally relevant genera in WWTPs, suggesting a role of secondary metabolism in this ecosystem. We find that the assembly of HQ MAGs using long-read sequencing is vital to explore the genetic potential for SM production among the uncultured members of microbial communities. IMPORTANCE Cataloguing secondary metabolite (SM) potential using genome mining of metagenomic data has become the method of choice in bioprospecting for novel compounds. However, accurate biosynthetic gene cluster (BGC) detection requires unfragmented genomic assemblies, which have been technically difficult to obtain from metagenomes until very recently with new long-read technologies. Here, we determined the biosynthetic potential of activated sludge (AS), the microbial community used in resource recovery and wastewater treatment, by mining high-quality metagenome-assembled genomes generated from long-read data. We found over 4,000 BGCs, including BGCs in abundant process-critical bacteria, with no similarity to the BGCs of characterized products. We show how long-read MAGs are required to confidently assemble complete BGCs, and we determined that the AS BGCs from different studies have very little overlap, suggesting that AS is a rich source of biosynthetic potential and new bioactive compounds. |
format | Online Article Text |
id | pubmed-9765116 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-97651162022-12-21 Long-Read Metagenome-Assembled Genomes Improve Identification of Novel Complete Biosynthetic Gene Clusters in a Complex Microbial Activated Sludge Ecosystem Sánchez-Navarro, Roberto Nuhamunada, Matin Mohite, Omkar S. Wasmund, Kenneth Albertsen, Mads Gram, Lone Nielsen, Per H. Weber, Tilmann Singleton, Caitlin M. mSystems Research Article Microorganisms produce a wide variety of secondary/specialized metabolites (SMs), the majority of which are yet to be discovered. These natural products play multiple roles in microbiomes and are important for microbial competition, communication, and success in the environment. SMs have been our major source of antibiotics and are used in a range of biotechnological applications. In silico mining for biosynthetic gene clusters (BGCs) encoding the production of SMs is commonly used to assess the genetic potential of organisms. However, as BGCs span tens to over 200 kb, identifying complete BGCs requires genome data that has minimal assembly gaps within the BGCs, a prerequisite that was previously only met by individually sequenced genomes. Here, we assess the performance of the currently available genome mining platform antiSMASH on 1,080 high-quality metagenome-assembled bacterial genomes (HQ MAGs) previously produced from wastewater treatment plants (WWTPs) using a combination of long-read (Oxford Nanopore) and short-read (Illumina) sequencing technologies. More than 4,200 different BGCs were identified, with 88% of these being complete. Sequence similarity clustering of the BGCs implies that the majority of this biosynthetic potential likely encodes novel compounds, and few BGCs are shared between genera. We identify BGCs in abundant and functionally relevant genera in WWTPs, suggesting a role of secondary metabolism in this ecosystem. We find that the assembly of HQ MAGs using long-read sequencing is vital to explore the genetic potential for SM production among the uncultured members of microbial communities. IMPORTANCE Cataloguing secondary metabolite (SM) potential using genome mining of metagenomic data has become the method of choice in bioprospecting for novel compounds. However, accurate biosynthetic gene cluster (BGC) detection requires unfragmented genomic assemblies, which have been technically difficult to obtain from metagenomes until very recently with new long-read technologies. Here, we determined the biosynthetic potential of activated sludge (AS), the microbial community used in resource recovery and wastewater treatment, by mining high-quality metagenome-assembled genomes generated from long-read data. We found over 4,000 BGCs, including BGCs in abundant process-critical bacteria, with no similarity to the BGCs of characterized products. We show how long-read MAGs are required to confidently assemble complete BGCs, and we determined that the AS BGCs from different studies have very little overlap, suggesting that AS is a rich source of biosynthetic potential and new bioactive compounds. American Society for Microbiology 2022-11-29 /pmc/articles/PMC9765116/ /pubmed/36445112 http://dx.doi.org/10.1128/msystems.00632-22 Text en Copyright © 2022 Sánchez-Navarro et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Sánchez-Navarro, Roberto Nuhamunada, Matin Mohite, Omkar S. Wasmund, Kenneth Albertsen, Mads Gram, Lone Nielsen, Per H. Weber, Tilmann Singleton, Caitlin M. Long-Read Metagenome-Assembled Genomes Improve Identification of Novel Complete Biosynthetic Gene Clusters in a Complex Microbial Activated Sludge Ecosystem |
title | Long-Read Metagenome-Assembled Genomes Improve Identification of Novel Complete Biosynthetic Gene Clusters in a Complex Microbial Activated Sludge Ecosystem |
title_full | Long-Read Metagenome-Assembled Genomes Improve Identification of Novel Complete Biosynthetic Gene Clusters in a Complex Microbial Activated Sludge Ecosystem |
title_fullStr | Long-Read Metagenome-Assembled Genomes Improve Identification of Novel Complete Biosynthetic Gene Clusters in a Complex Microbial Activated Sludge Ecosystem |
title_full_unstemmed | Long-Read Metagenome-Assembled Genomes Improve Identification of Novel Complete Biosynthetic Gene Clusters in a Complex Microbial Activated Sludge Ecosystem |
title_short | Long-Read Metagenome-Assembled Genomes Improve Identification of Novel Complete Biosynthetic Gene Clusters in a Complex Microbial Activated Sludge Ecosystem |
title_sort | long-read metagenome-assembled genomes improve identification of novel complete biosynthetic gene clusters in a complex microbial activated sludge ecosystem |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9765116/ https://www.ncbi.nlm.nih.gov/pubmed/36445112 http://dx.doi.org/10.1128/msystems.00632-22 |
work_keys_str_mv | AT sancheznavarroroberto longreadmetagenomeassembledgenomesimproveidentificationofnovelcompletebiosyntheticgeneclustersinacomplexmicrobialactivatedsludgeecosystem AT nuhamunadamatin longreadmetagenomeassembledgenomesimproveidentificationofnovelcompletebiosyntheticgeneclustersinacomplexmicrobialactivatedsludgeecosystem AT mohiteomkars longreadmetagenomeassembledgenomesimproveidentificationofnovelcompletebiosyntheticgeneclustersinacomplexmicrobialactivatedsludgeecosystem AT wasmundkenneth longreadmetagenomeassembledgenomesimproveidentificationofnovelcompletebiosyntheticgeneclustersinacomplexmicrobialactivatedsludgeecosystem AT albertsenmads longreadmetagenomeassembledgenomesimproveidentificationofnovelcompletebiosyntheticgeneclustersinacomplexmicrobialactivatedsludgeecosystem AT gramlone longreadmetagenomeassembledgenomesimproveidentificationofnovelcompletebiosyntheticgeneclustersinacomplexmicrobialactivatedsludgeecosystem AT nielsenperh longreadmetagenomeassembledgenomesimproveidentificationofnovelcompletebiosyntheticgeneclustersinacomplexmicrobialactivatedsludgeecosystem AT webertilmann longreadmetagenomeassembledgenomesimproveidentificationofnovelcompletebiosyntheticgeneclustersinacomplexmicrobialactivatedsludgeecosystem AT singletoncaitlinm longreadmetagenomeassembledgenomesimproveidentificationofnovelcompletebiosyntheticgeneclustersinacomplexmicrobialactivatedsludgeecosystem |