Cargando…
Potential Role of Lysine Acetylation in Antibiotic Resistance of Escherichia coli
Antibiotic resistance is increasingly becoming a challenge to public health. The regulation of bacterial metabolism by post-translational modifications (PTMs) has been widely studied. However, the mechanism underlying the regulation of acetylation in bacterial resistance to antibiotics is still unkn...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9765299/ https://www.ncbi.nlm.nih.gov/pubmed/36286553 http://dx.doi.org/10.1128/msystems.00649-22 |
_version_ | 1784853454654537728 |
---|---|
author | Fang, Zuye Lai, Fubin Cao, Kun Zhang, Ziyuan Cao, Linlin Liu, Shiqin Duan, Yufeng Yin, Xingfeng Ge, Ruiguang He, Qing-Yu Sun, Xuesong |
author_facet | Fang, Zuye Lai, Fubin Cao, Kun Zhang, Ziyuan Cao, Linlin Liu, Shiqin Duan, Yufeng Yin, Xingfeng Ge, Ruiguang He, Qing-Yu Sun, Xuesong |
author_sort | Fang, Zuye |
collection | PubMed |
description | Antibiotic resistance is increasingly becoming a challenge to public health. The regulation of bacterial metabolism by post-translational modifications (PTMs) has been widely studied. However, the mechanism underlying the regulation of acetylation in bacterial resistance to antibiotics is still unknown. Here, we performed a quantitative analysis of the acetylated proteome of a wild-type (WT) Escherichia coli (E. coli) sensitive strain and ampicillin- (Re-Amp), kanamycin- (Re-Kan), and polymyxin B-resistant (Re-Pol) strains. Based on bioinformatics analysis combined with biochemical validations, we found a common regulatory mechanism between the different resistant strains. Our results showed that protein acetylation negatively regulates bacterial metabolism to regulate antibiotic resistance and positively regulates bacterial motility. Further analyses revealed that key enzymes in various metabolic pathways were differentially acetylated. In particular, pyruvate kinase (PykF), a glycolytic enzyme that regulates bacterial metabolism, and its acetylated form were highly expressed in the three resistant strains and were identified as reversibly acetylated by the deacetylase CobB and the acetyl-transferase PatZ (peptidyl-lysine N-acetyltransferase). Results showed that PykF also could be acetylated by nonenzymatic acetyl phosphatase (AcP) in vitro. Furthermore, the deacetylation of Lys413 in PykF increased PykF enzymatic activity by changing the conformation of its ATP binding site, resulting in an increase in energy production which, in turn, increased the sensitivity of drug-resistant strains to antibiotics. This study provides novel insights for understanding bacterial resistance and lays the foundation for future research on the regulation of acetylation in antibiotic-resistant strains. IMPORTANCE The misuse of antibiotics has resulted in the emergence of many antibiotic-resistant strains which seriously threaten human health. Protein post-translational modifications, especially acetylation, tightly control bacterial metabolism. However, the comprehensive mechanism underlying the regulation of acetylation in bacterial resistance remains unexplored. Here, acetylation was found to positively regulate bacterial motility and negatively regulate energy metabolism, which was common in all antibiotic-resistant strains. Moreover, the acetylation and deacetylation process of PykF was uncovered, and deacetylation of the Lys 413 in PykF was found to contribute to bacterial sensitivity to antibiotics. This study provides a new direction for research on the development of bacterial resistance through post-translational modifications and a theoretical basis for developing antibacterial drugs. |
format | Online Article Text |
id | pubmed-9765299 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-97652992022-12-21 Potential Role of Lysine Acetylation in Antibiotic Resistance of Escherichia coli Fang, Zuye Lai, Fubin Cao, Kun Zhang, Ziyuan Cao, Linlin Liu, Shiqin Duan, Yufeng Yin, Xingfeng Ge, Ruiguang He, Qing-Yu Sun, Xuesong mSystems Research Article Antibiotic resistance is increasingly becoming a challenge to public health. The regulation of bacterial metabolism by post-translational modifications (PTMs) has been widely studied. However, the mechanism underlying the regulation of acetylation in bacterial resistance to antibiotics is still unknown. Here, we performed a quantitative analysis of the acetylated proteome of a wild-type (WT) Escherichia coli (E. coli) sensitive strain and ampicillin- (Re-Amp), kanamycin- (Re-Kan), and polymyxin B-resistant (Re-Pol) strains. Based on bioinformatics analysis combined with biochemical validations, we found a common regulatory mechanism between the different resistant strains. Our results showed that protein acetylation negatively regulates bacterial metabolism to regulate antibiotic resistance and positively regulates bacterial motility. Further analyses revealed that key enzymes in various metabolic pathways were differentially acetylated. In particular, pyruvate kinase (PykF), a glycolytic enzyme that regulates bacterial metabolism, and its acetylated form were highly expressed in the three resistant strains and were identified as reversibly acetylated by the deacetylase CobB and the acetyl-transferase PatZ (peptidyl-lysine N-acetyltransferase). Results showed that PykF also could be acetylated by nonenzymatic acetyl phosphatase (AcP) in vitro. Furthermore, the deacetylation of Lys413 in PykF increased PykF enzymatic activity by changing the conformation of its ATP binding site, resulting in an increase in energy production which, in turn, increased the sensitivity of drug-resistant strains to antibiotics. This study provides novel insights for understanding bacterial resistance and lays the foundation for future research on the regulation of acetylation in antibiotic-resistant strains. IMPORTANCE The misuse of antibiotics has resulted in the emergence of many antibiotic-resistant strains which seriously threaten human health. Protein post-translational modifications, especially acetylation, tightly control bacterial metabolism. However, the comprehensive mechanism underlying the regulation of acetylation in bacterial resistance remains unexplored. Here, acetylation was found to positively regulate bacterial motility and negatively regulate energy metabolism, which was common in all antibiotic-resistant strains. Moreover, the acetylation and deacetylation process of PykF was uncovered, and deacetylation of the Lys 413 in PykF was found to contribute to bacterial sensitivity to antibiotics. This study provides a new direction for research on the development of bacterial resistance through post-translational modifications and a theoretical basis for developing antibacterial drugs. American Society for Microbiology 2022-10-26 /pmc/articles/PMC9765299/ /pubmed/36286553 http://dx.doi.org/10.1128/msystems.00649-22 Text en Copyright © 2022 Fang et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Fang, Zuye Lai, Fubin Cao, Kun Zhang, Ziyuan Cao, Linlin Liu, Shiqin Duan, Yufeng Yin, Xingfeng Ge, Ruiguang He, Qing-Yu Sun, Xuesong Potential Role of Lysine Acetylation in Antibiotic Resistance of Escherichia coli |
title | Potential Role of Lysine Acetylation in Antibiotic Resistance of Escherichia coli |
title_full | Potential Role of Lysine Acetylation in Antibiotic Resistance of Escherichia coli |
title_fullStr | Potential Role of Lysine Acetylation in Antibiotic Resistance of Escherichia coli |
title_full_unstemmed | Potential Role of Lysine Acetylation in Antibiotic Resistance of Escherichia coli |
title_short | Potential Role of Lysine Acetylation in Antibiotic Resistance of Escherichia coli |
title_sort | potential role of lysine acetylation in antibiotic resistance of escherichia coli |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9765299/ https://www.ncbi.nlm.nih.gov/pubmed/36286553 http://dx.doi.org/10.1128/msystems.00649-22 |
work_keys_str_mv | AT fangzuye potentialroleoflysineacetylationinantibioticresistanceofescherichiacoli AT laifubin potentialroleoflysineacetylationinantibioticresistanceofescherichiacoli AT caokun potentialroleoflysineacetylationinantibioticresistanceofescherichiacoli AT zhangziyuan potentialroleoflysineacetylationinantibioticresistanceofescherichiacoli AT caolinlin potentialroleoflysineacetylationinantibioticresistanceofescherichiacoli AT liushiqin potentialroleoflysineacetylationinantibioticresistanceofescherichiacoli AT duanyufeng potentialroleoflysineacetylationinantibioticresistanceofescherichiacoli AT yinxingfeng potentialroleoflysineacetylationinantibioticresistanceofescherichiacoli AT geruiguang potentialroleoflysineacetylationinantibioticresistanceofescherichiacoli AT heqingyu potentialroleoflysineacetylationinantibioticresistanceofescherichiacoli AT sunxuesong potentialroleoflysineacetylationinantibioticresistanceofescherichiacoli |