Cargando…
Hydrothermal synthesis and characterization of the antimony–tin oxide nanomaterial and its application as a high-performance asymmetric supercapacitor, photocatalyst, and antibacterial agent
We have synthesized antimony-tin oxide (ATO) nanoparticles chemically for use in antibacterial, photocatalytic, and supercapacitor applications. The XRD pattern reveals the hexagonal structure, while the FTIR spectra validate the functional groups. The agglomerated nanostructures, which are 40–50 nm...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9765471/ https://www.ncbi.nlm.nih.gov/pubmed/36605811 http://dx.doi.org/10.1039/d2na00666a |
_version_ | 1784853494779346944 |
---|---|
author | Amutha, Eswaran Rajaduraipandian, Subramanian Sivakavinesan, Minnalkodi Annadurai, Gurusamy |
author_facet | Amutha, Eswaran Rajaduraipandian, Subramanian Sivakavinesan, Minnalkodi Annadurai, Gurusamy |
author_sort | Amutha, Eswaran |
collection | PubMed |
description | We have synthesized antimony-tin oxide (ATO) nanoparticles chemically for use in antibacterial, photocatalytic, and supercapacitor applications. The XRD pattern reveals the hexagonal structure, while the FTIR spectra validate the functional groups. The agglomerated nanostructures, which are 40–50 nm thick and 100 nm long, are shown in the SEM images as having spherical, cube, square, and rod form morphologies. In a DLS test, ATO has a zeta potential of 28.93/−28.00 mV, demonstrating strong colloidal stability in the suspension. With minimum inhibitory concentrations (MIC) ranging from 25 to 100 g mL(−1), ATO is also tested for its antibacterial activity against a variety of Gram-positive and Gram-negative bacteria. Additionally, rhodamine dye was broken down by ATO nanoparticles in 240 minutes with a degradation efficiency of 88 percent. The specific capacitance (C(s)) and energy density (E) values of ATO nanoparticles further demonstrated their suitability for use in supercapacitors. |
format | Online Article Text |
id | pubmed-9765471 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-97654712023-01-04 Hydrothermal synthesis and characterization of the antimony–tin oxide nanomaterial and its application as a high-performance asymmetric supercapacitor, photocatalyst, and antibacterial agent Amutha, Eswaran Rajaduraipandian, Subramanian Sivakavinesan, Minnalkodi Annadurai, Gurusamy Nanoscale Adv Chemistry We have synthesized antimony-tin oxide (ATO) nanoparticles chemically for use in antibacterial, photocatalytic, and supercapacitor applications. The XRD pattern reveals the hexagonal structure, while the FTIR spectra validate the functional groups. The agglomerated nanostructures, which are 40–50 nm thick and 100 nm long, are shown in the SEM images as having spherical, cube, square, and rod form morphologies. In a DLS test, ATO has a zeta potential of 28.93/−28.00 mV, demonstrating strong colloidal stability in the suspension. With minimum inhibitory concentrations (MIC) ranging from 25 to 100 g mL(−1), ATO is also tested for its antibacterial activity against a variety of Gram-positive and Gram-negative bacteria. Additionally, rhodamine dye was broken down by ATO nanoparticles in 240 minutes with a degradation efficiency of 88 percent. The specific capacitance (C(s)) and energy density (E) values of ATO nanoparticles further demonstrated their suitability for use in supercapacitors. RSC 2022-11-21 /pmc/articles/PMC9765471/ /pubmed/36605811 http://dx.doi.org/10.1039/d2na00666a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Amutha, Eswaran Rajaduraipandian, Subramanian Sivakavinesan, Minnalkodi Annadurai, Gurusamy Hydrothermal synthesis and characterization of the antimony–tin oxide nanomaterial and its application as a high-performance asymmetric supercapacitor, photocatalyst, and antibacterial agent |
title | Hydrothermal synthesis and characterization of the antimony–tin oxide nanomaterial and its application as a high-performance asymmetric supercapacitor, photocatalyst, and antibacterial agent |
title_full | Hydrothermal synthesis and characterization of the antimony–tin oxide nanomaterial and its application as a high-performance asymmetric supercapacitor, photocatalyst, and antibacterial agent |
title_fullStr | Hydrothermal synthesis and characterization of the antimony–tin oxide nanomaterial and its application as a high-performance asymmetric supercapacitor, photocatalyst, and antibacterial agent |
title_full_unstemmed | Hydrothermal synthesis and characterization of the antimony–tin oxide nanomaterial and its application as a high-performance asymmetric supercapacitor, photocatalyst, and antibacterial agent |
title_short | Hydrothermal synthesis and characterization of the antimony–tin oxide nanomaterial and its application as a high-performance asymmetric supercapacitor, photocatalyst, and antibacterial agent |
title_sort | hydrothermal synthesis and characterization of the antimony–tin oxide nanomaterial and its application as a high-performance asymmetric supercapacitor, photocatalyst, and antibacterial agent |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9765471/ https://www.ncbi.nlm.nih.gov/pubmed/36605811 http://dx.doi.org/10.1039/d2na00666a |
work_keys_str_mv | AT amuthaeswaran hydrothermalsynthesisandcharacterizationoftheantimonytinoxidenanomaterialanditsapplicationasahighperformanceasymmetricsupercapacitorphotocatalystandantibacterialagent AT rajaduraipandiansubramanian hydrothermalsynthesisandcharacterizationoftheantimonytinoxidenanomaterialanditsapplicationasahighperformanceasymmetricsupercapacitorphotocatalystandantibacterialagent AT sivakavinesanminnalkodi hydrothermalsynthesisandcharacterizationoftheantimonytinoxidenanomaterialanditsapplicationasahighperformanceasymmetricsupercapacitorphotocatalystandantibacterialagent AT annaduraigurusamy hydrothermalsynthesisandcharacterizationoftheantimonytinoxidenanomaterialanditsapplicationasahighperformanceasymmetricsupercapacitorphotocatalystandantibacterialagent |