Cargando…

Translating Marine Symbioses toward Drug Development

Chemists have studied marine animals for the better part of a century because they contain a diverse array of bioactive compounds. Tens of thousands of compounds have been reported, many with elaborate structural motifs and biological mechanisms of action found nowhere else. The challenge holding ba...

Descripción completa

Detalles Bibliográficos
Autores principales: Schmidt, Eric W., Lin, Zhenjian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9765598/
https://www.ncbi.nlm.nih.gov/pubmed/36314838
http://dx.doi.org/10.1128/mbio.02499-22
Descripción
Sumario:Chemists have studied marine animals for the better part of a century because they contain a diverse array of bioactive compounds. Tens of thousands of compounds have been reported, many with elaborate structural motifs and biological mechanisms of action found nowhere else. The challenge holding back the field has long been that of supply. Compounds are sometimes obtained by cultivating marine animals or by wild harvest, but this often presents logistical and environmental challenges. Some of the most medically important marine animal compounds are supplied by synthesis, often through multistep procedures that delay drug development. A relatively small number of such agents have been approved by the U.S. Food and Drug Administration, often after a heroic effort. In a recent mBio paper, Uppal and coworkers (https://doi.org/10.1128/mBio.01524-22) address key hurdles underlying the supply issue, discovering an uncultivated new bacterial genus from a marine sponge and reconstituting the biosynthetic pathway for expression.