Cargando…
NLoed: A Python Package for Nonlinear Optimal Experimental Design in Systems Biology
[Image: see text] Modeling in systems and synthetic biology relies on accurate parameter estimates and predictions. Accurate model calibration relies, in turn, on data and on how well suited the available data are to a particular modeling task. Optimal experimental design (OED) techniques can be use...
Autores principales: | Braniff, Nathan, Pearce, Taylor, Lu, Zixuan, Astwood, Michael, Forrest, William S. R., Receno, Cody, Ingalls, Brian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9765746/ https://www.ncbi.nlm.nih.gov/pubmed/36473701 http://dx.doi.org/10.1021/acssynbio.2c00131 |
Ejemplares similares
-
Deep reinforcement learning for optimal experimental design in biology
por: Treloar, Neythen J., et al.
Publicado: (2022) -
NLO QCD corrections in Herwig++ with MC@NLO
por: Frixione, Stefano, et al.
Publicado: (2010) -
Nonlinear digital filtering with Python: an introduction
por: Pearson, Ronald K, et al.
Publicado: (2015) -
The influence of pentafluorophenyl groups on the nonlinear optical (NLO) performance of high generation dendrons and dendrimers
por: Wu, Wenbo, et al.
Publicado: (2014) -
Matching NLO QCD computations with PYTHIA using MC@NLO
por: Torrielli, Paolo, et al.
Publicado: (2010)