Cargando…
COMBINING SCLEROSTIN AND DKK1 INHIBITORS TO IMPROVE BONE PROPERTIES IN THE AGED SKELETON
Targeting the secreted Wnt inhibitor sclerostin has been an attractive strategy to improve skeletal health. Sclerostin antibody (romosozumab-aqqg; Evenity) was recently approved by the FDA to treat patients at increased risk of fracture. However, an increased risk of cardiovascular events was report...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9766637/ http://dx.doi.org/10.1093/geroni/igac059.2659 |
_version_ | 1784853778794545152 |
---|---|
author | Choi, Roy Robling, Alexander |
author_facet | Choi, Roy Robling, Alexander |
author_sort | Choi, Roy |
collection | PubMed |
description | Targeting the secreted Wnt inhibitor sclerostin has been an attractive strategy to improve skeletal health. Sclerostin antibody (romosozumab-aqqg; Evenity) was recently approved by the FDA to treat patients at increased risk of fracture. However, an increased risk of cardiovascular events was reported, resulting in issue a ‘black box warning’ requirement for romosozumab. One potential solution to lower the risk of adverse events is to reduce the medication dose. Previously, we found that dual inhibition of sclerostin and Dkk1 produced extremely potent synergistic bone anabolic effects, in both genetic and pharmacological models. While Dkk1 inhibition alone has no consistent bone-building effects, combining antibodies that target sclerostin (Scl-mAb) and Dkk1 (Dkk1-mAb) at 3:1 ratio resulted in 2-3X more bone gain as Scl-mAb alone. Further, much lower total doses of dual antibody treatment, given at optimized proportions, generated equivalent bone anabolic effects as Scl-mAb alone (at much higher doses), suggesting that a combinational strategy has obvious translational benefits. Finally, we tested whether low-dose combination therapy can maintain the same osteogenic effect as Scl-mAb in adult (6 month) and aged (20 month) mice. Outcome measures derived from radiographic, biomechanical, and histomorphometric assays revealed that a 3:1 ratio of Scl-mAb:Dkk1-mAb at 12.5mg/kg was as efficacious as 25mg/kg of Scl-mAb alone, in both age groups. Moreover, cortical porosity—a significant factor contributing to skeletal fragility in the aged skeleton—was significantly reduced by both Scl-mAb and low-dose combination treatment. In conclusion, our findings suggest that optimized low-dose combinational therapy is viable strategy for improving skeletal fragility. |
format | Online Article Text |
id | pubmed-9766637 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-97666372022-12-20 COMBINING SCLEROSTIN AND DKK1 INHIBITORS TO IMPROVE BONE PROPERTIES IN THE AGED SKELETON Choi, Roy Robling, Alexander Innov Aging Abstracts Targeting the secreted Wnt inhibitor sclerostin has been an attractive strategy to improve skeletal health. Sclerostin antibody (romosozumab-aqqg; Evenity) was recently approved by the FDA to treat patients at increased risk of fracture. However, an increased risk of cardiovascular events was reported, resulting in issue a ‘black box warning’ requirement for romosozumab. One potential solution to lower the risk of adverse events is to reduce the medication dose. Previously, we found that dual inhibition of sclerostin and Dkk1 produced extremely potent synergistic bone anabolic effects, in both genetic and pharmacological models. While Dkk1 inhibition alone has no consistent bone-building effects, combining antibodies that target sclerostin (Scl-mAb) and Dkk1 (Dkk1-mAb) at 3:1 ratio resulted in 2-3X more bone gain as Scl-mAb alone. Further, much lower total doses of dual antibody treatment, given at optimized proportions, generated equivalent bone anabolic effects as Scl-mAb alone (at much higher doses), suggesting that a combinational strategy has obvious translational benefits. Finally, we tested whether low-dose combination therapy can maintain the same osteogenic effect as Scl-mAb in adult (6 month) and aged (20 month) mice. Outcome measures derived from radiographic, biomechanical, and histomorphometric assays revealed that a 3:1 ratio of Scl-mAb:Dkk1-mAb at 12.5mg/kg was as efficacious as 25mg/kg of Scl-mAb alone, in both age groups. Moreover, cortical porosity—a significant factor contributing to skeletal fragility in the aged skeleton—was significantly reduced by both Scl-mAb and low-dose combination treatment. In conclusion, our findings suggest that optimized low-dose combinational therapy is viable strategy for improving skeletal fragility. Oxford University Press 2022-12-20 /pmc/articles/PMC9766637/ http://dx.doi.org/10.1093/geroni/igac059.2659 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of The Gerontological Society of America. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Abstracts Choi, Roy Robling, Alexander COMBINING SCLEROSTIN AND DKK1 INHIBITORS TO IMPROVE BONE PROPERTIES IN THE AGED SKELETON |
title | COMBINING SCLEROSTIN AND DKK1 INHIBITORS TO IMPROVE BONE PROPERTIES IN THE AGED SKELETON |
title_full | COMBINING SCLEROSTIN AND DKK1 INHIBITORS TO IMPROVE BONE PROPERTIES IN THE AGED SKELETON |
title_fullStr | COMBINING SCLEROSTIN AND DKK1 INHIBITORS TO IMPROVE BONE PROPERTIES IN THE AGED SKELETON |
title_full_unstemmed | COMBINING SCLEROSTIN AND DKK1 INHIBITORS TO IMPROVE BONE PROPERTIES IN THE AGED SKELETON |
title_short | COMBINING SCLEROSTIN AND DKK1 INHIBITORS TO IMPROVE BONE PROPERTIES IN THE AGED SKELETON |
title_sort | combining sclerostin and dkk1 inhibitors to improve bone properties in the aged skeleton |
topic | Abstracts |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9766637/ http://dx.doi.org/10.1093/geroni/igac059.2659 |
work_keys_str_mv | AT choiroy combiningsclerostinanddkk1inhibitorstoimprovebonepropertiesintheagedskeleton AT roblingalexander combiningsclerostinanddkk1inhibitorstoimprovebonepropertiesintheagedskeleton |