Cargando…

Modulation of the long non-coding RNA Mir155hg by high, but not moderate, hydrostatic pressure in cartilage precursor cells

Osteoarthritis (OA) is the most common joint disease in older adults and is characterized by a gradual degradation of articular cartilage due to decreased cartilage matrix gene expression and increased expression of genes involved in protein degradation, apoptosis and inflammation. Due to the high w...

Descripción completa

Detalles Bibliográficos
Autores principales: Montagne, Kevin, Furukawa, Katsuko S., Taninaka, Yuki, Ngao, Brandon, Ushida, Takashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9767356/
https://www.ncbi.nlm.nih.gov/pubmed/36538560
http://dx.doi.org/10.1371/journal.pone.0275682
_version_ 1784853948940681216
author Montagne, Kevin
Furukawa, Katsuko S.
Taninaka, Yuki
Ngao, Brandon
Ushida, Takashi
author_facet Montagne, Kevin
Furukawa, Katsuko S.
Taninaka, Yuki
Ngao, Brandon
Ushida, Takashi
author_sort Montagne, Kevin
collection PubMed
description Osteoarthritis (OA) is the most common joint disease in older adults and is characterized by a gradual degradation of articular cartilage due to decreased cartilage matrix gene expression and increased expression of genes involved in protein degradation, apoptosis and inflammation. Due to the high water content of cartilage, one of the main physical stimuli sensed by chondrocytes is hydrostatic pressure. We previously showed that high pressure above 20 MPa induced gene expression changes in chondrocyte precursor cells similar to what is observed in OA. Micro-RNAs are small non-coding RNAs essential to many physiological and pathological process including OA. As the micro-RNA miR-155 has been found increased in OA chondrocytes, we investigated the effects of high pressure on the expression of the miR-155 host gene Mir155hg. The chondrocyte progenitor cell line ATDC5 was pressurized under hydrostatic pressure up to 25 MPa and the expression of Mir155hg or the resulting micro-RNAs were measured; pharmacological inhibitors were used to identify the signaling pathways involved in the regulation of Mir155hg. We found that Mir155hg is strongly and rapidly up-regulated by high, but not moderate, pressure in chondrocyte progenitor cells. This up-regulation likely involves the membrane channel pannexin-1 and several intracellular signaling molecules including PKC and Src. MiR-155-5p and -3p were also up-regulated by pressure though somewhat later than Mir155hg, and a set of known miR-155-5p target genes, including Ikbke, Smarca4 and Ywhae, was affected by pressure, suggesting that Mir155hg may have important roles in cartilage physiology.
format Online
Article
Text
id pubmed-9767356
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-97673562022-12-21 Modulation of the long non-coding RNA Mir155hg by high, but not moderate, hydrostatic pressure in cartilage precursor cells Montagne, Kevin Furukawa, Katsuko S. Taninaka, Yuki Ngao, Brandon Ushida, Takashi PLoS One Research Article Osteoarthritis (OA) is the most common joint disease in older adults and is characterized by a gradual degradation of articular cartilage due to decreased cartilage matrix gene expression and increased expression of genes involved in protein degradation, apoptosis and inflammation. Due to the high water content of cartilage, one of the main physical stimuli sensed by chondrocytes is hydrostatic pressure. We previously showed that high pressure above 20 MPa induced gene expression changes in chondrocyte precursor cells similar to what is observed in OA. Micro-RNAs are small non-coding RNAs essential to many physiological and pathological process including OA. As the micro-RNA miR-155 has been found increased in OA chondrocytes, we investigated the effects of high pressure on the expression of the miR-155 host gene Mir155hg. The chondrocyte progenitor cell line ATDC5 was pressurized under hydrostatic pressure up to 25 MPa and the expression of Mir155hg or the resulting micro-RNAs were measured; pharmacological inhibitors were used to identify the signaling pathways involved in the regulation of Mir155hg. We found that Mir155hg is strongly and rapidly up-regulated by high, but not moderate, pressure in chondrocyte progenitor cells. This up-regulation likely involves the membrane channel pannexin-1 and several intracellular signaling molecules including PKC and Src. MiR-155-5p and -3p were also up-regulated by pressure though somewhat later than Mir155hg, and a set of known miR-155-5p target genes, including Ikbke, Smarca4 and Ywhae, was affected by pressure, suggesting that Mir155hg may have important roles in cartilage physiology. Public Library of Science 2022-12-20 /pmc/articles/PMC9767356/ /pubmed/36538560 http://dx.doi.org/10.1371/journal.pone.0275682 Text en © 2022 Montagne et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Montagne, Kevin
Furukawa, Katsuko S.
Taninaka, Yuki
Ngao, Brandon
Ushida, Takashi
Modulation of the long non-coding RNA Mir155hg by high, but not moderate, hydrostatic pressure in cartilage precursor cells
title Modulation of the long non-coding RNA Mir155hg by high, but not moderate, hydrostatic pressure in cartilage precursor cells
title_full Modulation of the long non-coding RNA Mir155hg by high, but not moderate, hydrostatic pressure in cartilage precursor cells
title_fullStr Modulation of the long non-coding RNA Mir155hg by high, but not moderate, hydrostatic pressure in cartilage precursor cells
title_full_unstemmed Modulation of the long non-coding RNA Mir155hg by high, but not moderate, hydrostatic pressure in cartilage precursor cells
title_short Modulation of the long non-coding RNA Mir155hg by high, but not moderate, hydrostatic pressure in cartilage precursor cells
title_sort modulation of the long non-coding rna mir155hg by high, but not moderate, hydrostatic pressure in cartilage precursor cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9767356/
https://www.ncbi.nlm.nih.gov/pubmed/36538560
http://dx.doi.org/10.1371/journal.pone.0275682
work_keys_str_mv AT montagnekevin modulationofthelongnoncodingrnamir155hgbyhighbutnotmoderatehydrostaticpressureincartilageprecursorcells
AT furukawakatsukos modulationofthelongnoncodingrnamir155hgbyhighbutnotmoderatehydrostaticpressureincartilageprecursorcells
AT taninakayuki modulationofthelongnoncodingrnamir155hgbyhighbutnotmoderatehydrostaticpressureincartilageprecursorcells
AT ngaobrandon modulationofthelongnoncodingrnamir155hgbyhighbutnotmoderatehydrostaticpressureincartilageprecursorcells
AT ushidatakashi modulationofthelongnoncodingrnamir155hgbyhighbutnotmoderatehydrostaticpressureincartilageprecursorcells