Cargando…

A social media analytics platform visualising the spread of COVID-19 in Italy via exploitation of automatically geotagged tweets

Social media play an important role in the daily life of people around the globe and users have emerged as an active part of news distribution as well as production. The threatening pandemic of COVID-19 has been the lead subject in online discussions and posts, resulting to large amounts of related...

Descripción completa

Detalles Bibliográficos
Autores principales: Andreadis, Stelios, Antzoulatos, Gerasimos, Mavropoulos, Thanassis, Giannakeris, Panagiotis, Tzionis, Grigoris, Pantelidis, Nick, Ioannidis, Konstantinos, Karakostas, Anastasios, Gialampoukidis, Ilias, Vrochidis, Stefanos, Kompatsiaris, Ioannis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Authors. Published by Elsevier B.V. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9767437/
https://www.ncbi.nlm.nih.gov/pubmed/36570037
http://dx.doi.org/10.1016/j.osnem.2021.100134
_version_ 1784853965397032960
author Andreadis, Stelios
Antzoulatos, Gerasimos
Mavropoulos, Thanassis
Giannakeris, Panagiotis
Tzionis, Grigoris
Pantelidis, Nick
Ioannidis, Konstantinos
Karakostas, Anastasios
Gialampoukidis, Ilias
Vrochidis, Stefanos
Kompatsiaris, Ioannis
author_facet Andreadis, Stelios
Antzoulatos, Gerasimos
Mavropoulos, Thanassis
Giannakeris, Panagiotis
Tzionis, Grigoris
Pantelidis, Nick
Ioannidis, Konstantinos
Karakostas, Anastasios
Gialampoukidis, Ilias
Vrochidis, Stefanos
Kompatsiaris, Ioannis
author_sort Andreadis, Stelios
collection PubMed
description Social media play an important role in the daily life of people around the globe and users have emerged as an active part of news distribution as well as production. The threatening pandemic of COVID-19 has been the lead subject in online discussions and posts, resulting to large amounts of related social media data, which can be utilised to reinforce the crisis management in several ways. Towards this direction, we propose a novel framework to collect, analyse, and visualise Twitter posts, which has been tailored to specifically monitor the virus spread in severely affected Italy. We present and evaluate a deep learning localisation technique that geotags posts based on the locations mentioned in their text, a face detection algorithm to estimate the number of people appearing in posted images, and a community detection approach to identify communities of Twitter users. Moreover, we propose further analysis of the collected posts to predict their reliability and to detect trending topics and events. Finally, we demonstrate an online platform that comprises an interactive map to display and filter analysed posts, utilising the outcome of the localisation technique, and a visual analytics dashboard that visualises the results of the topic, community, and event detection methodologies.
format Online
Article
Text
id pubmed-9767437
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Authors. Published by Elsevier B.V.
record_format MEDLINE/PubMed
spelling pubmed-97674372022-12-21 A social media analytics platform visualising the spread of COVID-19 in Italy via exploitation of automatically geotagged tweets Andreadis, Stelios Antzoulatos, Gerasimos Mavropoulos, Thanassis Giannakeris, Panagiotis Tzionis, Grigoris Pantelidis, Nick Ioannidis, Konstantinos Karakostas, Anastasios Gialampoukidis, Ilias Vrochidis, Stefanos Kompatsiaris, Ioannis Online Soc Netw Media Article Social media play an important role in the daily life of people around the globe and users have emerged as an active part of news distribution as well as production. The threatening pandemic of COVID-19 has been the lead subject in online discussions and posts, resulting to large amounts of related social media data, which can be utilised to reinforce the crisis management in several ways. Towards this direction, we propose a novel framework to collect, analyse, and visualise Twitter posts, which has been tailored to specifically monitor the virus spread in severely affected Italy. We present and evaluate a deep learning localisation technique that geotags posts based on the locations mentioned in their text, a face detection algorithm to estimate the number of people appearing in posted images, and a community detection approach to identify communities of Twitter users. Moreover, we propose further analysis of the collected posts to predict their reliability and to detect trending topics and events. Finally, we demonstrate an online platform that comprises an interactive map to display and filter analysed posts, utilising the outcome of the localisation technique, and a visual analytics dashboard that visualises the results of the topic, community, and event detection methodologies. The Authors. Published by Elsevier B.V. 2021-05 2021-04-30 /pmc/articles/PMC9767437/ /pubmed/36570037 http://dx.doi.org/10.1016/j.osnem.2021.100134 Text en © 2021 The Authors Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Article
Andreadis, Stelios
Antzoulatos, Gerasimos
Mavropoulos, Thanassis
Giannakeris, Panagiotis
Tzionis, Grigoris
Pantelidis, Nick
Ioannidis, Konstantinos
Karakostas, Anastasios
Gialampoukidis, Ilias
Vrochidis, Stefanos
Kompatsiaris, Ioannis
A social media analytics platform visualising the spread of COVID-19 in Italy via exploitation of automatically geotagged tweets
title A social media analytics platform visualising the spread of COVID-19 in Italy via exploitation of automatically geotagged tweets
title_full A social media analytics platform visualising the spread of COVID-19 in Italy via exploitation of automatically geotagged tweets
title_fullStr A social media analytics platform visualising the spread of COVID-19 in Italy via exploitation of automatically geotagged tweets
title_full_unstemmed A social media analytics platform visualising the spread of COVID-19 in Italy via exploitation of automatically geotagged tweets
title_short A social media analytics platform visualising the spread of COVID-19 in Italy via exploitation of automatically geotagged tweets
title_sort social media analytics platform visualising the spread of covid-19 in italy via exploitation of automatically geotagged tweets
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9767437/
https://www.ncbi.nlm.nih.gov/pubmed/36570037
http://dx.doi.org/10.1016/j.osnem.2021.100134
work_keys_str_mv AT andreadisstelios asocialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT antzoulatosgerasimos asocialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT mavropoulosthanassis asocialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT giannakerispanagiotis asocialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT tzionisgrigoris asocialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT pantelidisnick asocialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT ioannidiskonstantinos asocialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT karakostasanastasios asocialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT gialampoukidisilias asocialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT vrochidisstefanos asocialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT kompatsiarisioannis asocialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT andreadisstelios socialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT antzoulatosgerasimos socialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT mavropoulosthanassis socialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT giannakerispanagiotis socialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT tzionisgrigoris socialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT pantelidisnick socialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT ioannidiskonstantinos socialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT karakostasanastasios socialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT gialampoukidisilias socialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT vrochidisstefanos socialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets
AT kompatsiarisioannis socialmediaanalyticsplatformvisualisingthespreadofcovid19initalyviaexploitationofautomaticallygeotaggedtweets