Cargando…

Teaching computational genomics and bioinformatics on a high performance computing cluster—a primer

The burgeoning field of genomics as applied to personalized medicine, epidemiology, conservation, agriculture, forensics, drug development, and other fields comes with large computational and bioinformatics costs, which are often inaccessible to student trainees in classroom settings at universities...

Descripción completa

Detalles Bibliográficos
Autor principal: Sethuraman, Arun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9767868/
https://www.ncbi.nlm.nih.gov/pubmed/36561335
http://dx.doi.org/10.1093/biomethods/bpac032
Descripción
Sumario:The burgeoning field of genomics as applied to personalized medicine, epidemiology, conservation, agriculture, forensics, drug development, and other fields comes with large computational and bioinformatics costs, which are often inaccessible to student trainees in classroom settings at universities. However, with increased availability of resources such as NSF XSEDE, Google Cloud, Amazon AWS, and other high-performance computing (HPC) clouds and clusters for educational purposes, a growing community of academicians are working on teaching the utility of HPC resources in genomics and big data analyses. Here, I describe the successful implementation of a semester-long (16 week) upper division undergraduate/graduate level course in Computational Genomics and Bioinformatics taught at San Diego State University in Spring 2022. Students were trained in the theory, algorithms and hands-on applications of genomic data quality control, assembly, annotation, multiple sequence alignment, variant calling, phylogenomic analyses, population genomics, genome-wide association studies, and differential gene expression analyses using RNAseq data on their own dedicated 6-CPU NSF XSEDE Jetstream virtual machines. All lesson plans, activities, examinations, tutorials, code, lectures, and notes are publicly available at https://github.com/arunsethuraman/biomi609spring2022.