Cargando…
Citrus disease detection using convolution neural network generated features and Softmax classifier on hyperspectral image data
Identification and segregation of citrus fruit with diseases and peel blemishes are required to preserve market value. Previously developed machine vision approaches could only distinguish cankerous from non-cankerous citrus, while this research focused on detecting eight different peel conditions o...
Autores principales: | Yadav, Pappu Kumar, Burks, Thomas, Frederick, Quentin, Qin, Jianwei, Kim, Moon, Ritenour, Mark A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768035/ https://www.ncbi.nlm.nih.gov/pubmed/36570926 http://dx.doi.org/10.3389/fpls.2022.1043712 |
Ejemplares similares
-
Apple Disease Recognition Based on Convolutional Neural Networks With Modified Softmax
por: Li, Ping, et al.
Publicado: (2022) -
Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging
por: Halicek, Martin, et al.
Publicado: (2017) -
Deep Classification with Linearity-Enhanced Logits to Softmax Function
por: Shao, Hao, et al.
Publicado: (2023) -
Plant Species Classification Based on Hyperspectral Imaging via a Lightweight Convolutional Neural Network Model
por: Liu, Keng-Hao, et al.
Publicado: (2022) -
Detecting Asymptomatic Infections of Rice Bacterial Leaf Blight Using Hyperspectral Imaging and 3-Dimensional Convolutional Neural Network With Spectral Dilated Convolution
por: Cao, Yifei, et al.
Publicado: (2022)