Cargando…

Morphological control enables nanometer-scale dissection of cell-cell signaling complexes

Protein micropatterning enables robust control of cell positioning on electron-microscopy substrates for cryogenic electron tomography (cryo-ET). However, the combination of regulated cell boundaries and the underlying electron-microscopy substrate (EM-grids) provides a poorly understood microenviro...

Descripción completa

Detalles Bibliográficos
Autores principales: Dow, Liam P., Gaietta, Guido, Kaufman, Yair, Swift, Mark F., Lemos, Moara, Lane, Kerry, Hopcroft, Matthew, Bezault, Armel, Sauvanet, Cécile, Volkmann, Niels, Pruitt, Beth L., Hanein, Dorit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768166/
https://www.ncbi.nlm.nih.gov/pubmed/36539423
http://dx.doi.org/10.1038/s41467-022-35409-9
_version_ 1784854106807992320
author Dow, Liam P.
Gaietta, Guido
Kaufman, Yair
Swift, Mark F.
Lemos, Moara
Lane, Kerry
Hopcroft, Matthew
Bezault, Armel
Sauvanet, Cécile
Volkmann, Niels
Pruitt, Beth L.
Hanein, Dorit
author_facet Dow, Liam P.
Gaietta, Guido
Kaufman, Yair
Swift, Mark F.
Lemos, Moara
Lane, Kerry
Hopcroft, Matthew
Bezault, Armel
Sauvanet, Cécile
Volkmann, Niels
Pruitt, Beth L.
Hanein, Dorit
author_sort Dow, Liam P.
collection PubMed
description Protein micropatterning enables robust control of cell positioning on electron-microscopy substrates for cryogenic electron tomography (cryo-ET). However, the combination of regulated cell boundaries and the underlying electron-microscopy substrate (EM-grids) provides a poorly understood microenvironment for cell biology. Because substrate stiffness and morphology affect cellular behavior, we devised protocols to characterize the nanometer-scale details of the protein micropatterns on EM-grids by combining cryo-ET, atomic force microscopy, and scanning electron microscopy. Measuring force displacement characteristics of holey carbon EM-grids, we found that their effective spring constant is similar to physiological values expected from skin tissues. Despite their apparent smoothness at light-microscopy resolution, spatial boundaries of the protein micropatterns are irregular at nanometer scale. Our protein micropatterning workflow provides the means to steer both positioning and morphology of cell doublets to determine nanometer details of punctate adherens junctions. Our workflow serves as the foundation for studying the fundamental structural changes governing cell-cell signaling.
format Online
Article
Text
id pubmed-9768166
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-97681662022-12-22 Morphological control enables nanometer-scale dissection of cell-cell signaling complexes Dow, Liam P. Gaietta, Guido Kaufman, Yair Swift, Mark F. Lemos, Moara Lane, Kerry Hopcroft, Matthew Bezault, Armel Sauvanet, Cécile Volkmann, Niels Pruitt, Beth L. Hanein, Dorit Nat Commun Article Protein micropatterning enables robust control of cell positioning on electron-microscopy substrates for cryogenic electron tomography (cryo-ET). However, the combination of regulated cell boundaries and the underlying electron-microscopy substrate (EM-grids) provides a poorly understood microenvironment for cell biology. Because substrate stiffness and morphology affect cellular behavior, we devised protocols to characterize the nanometer-scale details of the protein micropatterns on EM-grids by combining cryo-ET, atomic force microscopy, and scanning electron microscopy. Measuring force displacement characteristics of holey carbon EM-grids, we found that their effective spring constant is similar to physiological values expected from skin tissues. Despite their apparent smoothness at light-microscopy resolution, spatial boundaries of the protein micropatterns are irregular at nanometer scale. Our protein micropatterning workflow provides the means to steer both positioning and morphology of cell doublets to determine nanometer details of punctate adherens junctions. Our workflow serves as the foundation for studying the fundamental structural changes governing cell-cell signaling. Nature Publishing Group UK 2022-12-20 /pmc/articles/PMC9768166/ /pubmed/36539423 http://dx.doi.org/10.1038/s41467-022-35409-9 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Dow, Liam P.
Gaietta, Guido
Kaufman, Yair
Swift, Mark F.
Lemos, Moara
Lane, Kerry
Hopcroft, Matthew
Bezault, Armel
Sauvanet, Cécile
Volkmann, Niels
Pruitt, Beth L.
Hanein, Dorit
Morphological control enables nanometer-scale dissection of cell-cell signaling complexes
title Morphological control enables nanometer-scale dissection of cell-cell signaling complexes
title_full Morphological control enables nanometer-scale dissection of cell-cell signaling complexes
title_fullStr Morphological control enables nanometer-scale dissection of cell-cell signaling complexes
title_full_unstemmed Morphological control enables nanometer-scale dissection of cell-cell signaling complexes
title_short Morphological control enables nanometer-scale dissection of cell-cell signaling complexes
title_sort morphological control enables nanometer-scale dissection of cell-cell signaling complexes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768166/
https://www.ncbi.nlm.nih.gov/pubmed/36539423
http://dx.doi.org/10.1038/s41467-022-35409-9
work_keys_str_mv AT dowliamp morphologicalcontrolenablesnanometerscaledissectionofcellcellsignalingcomplexes
AT gaiettaguido morphologicalcontrolenablesnanometerscaledissectionofcellcellsignalingcomplexes
AT kaufmanyair morphologicalcontrolenablesnanometerscaledissectionofcellcellsignalingcomplexes
AT swiftmarkf morphologicalcontrolenablesnanometerscaledissectionofcellcellsignalingcomplexes
AT lemosmoara morphologicalcontrolenablesnanometerscaledissectionofcellcellsignalingcomplexes
AT lanekerry morphologicalcontrolenablesnanometerscaledissectionofcellcellsignalingcomplexes
AT hopcroftmatthew morphologicalcontrolenablesnanometerscaledissectionofcellcellsignalingcomplexes
AT bezaultarmel morphologicalcontrolenablesnanometerscaledissectionofcellcellsignalingcomplexes
AT sauvanetcecile morphologicalcontrolenablesnanometerscaledissectionofcellcellsignalingcomplexes
AT volkmannniels morphologicalcontrolenablesnanometerscaledissectionofcellcellsignalingcomplexes
AT pruittbethl morphologicalcontrolenablesnanometerscaledissectionofcellcellsignalingcomplexes
AT haneindorit morphologicalcontrolenablesnanometerscaledissectionofcellcellsignalingcomplexes