Cargando…
What makes the unsupervised monocular depth estimation (UMDE) model training better
Current computer vision tasks based on deep learning require a huge amount of data with annotations for model training or testing, especially in some dense estimation tasks, such as optical flow segmentation and depth estimation. In practice, manual labeling for dense estimation tasks is very diffic...
Autores principales: | Wang, Xiangtong, Liang, Binbin, Yang, Menglong, Li, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768171/ https://www.ncbi.nlm.nih.gov/pubmed/36539595 http://dx.doi.org/10.1038/s41598-022-26613-0 |
Ejemplares similares
-
Unsupervised Monocular Depth Estimation for Colonoscope System Using Feedback Network
por: Hwang, Seung-Jun, et al.
Publicado: (2021) -
Unsupervised Monocular Depth Estimation Method Based on Uncertainty Analysis and Retinex Algorithm
por: Song, Chuanxue, et al.
Publicado: (2020) -
Unsupervised Monocular Depth and Camera Pose Estimation with Multiple Masks and Geometric Consistency Constraints
por: Zhang, Xudong, et al.
Publicado: (2023) -
Unsupervised Learning of Monocular Depth and Ego-Motion with Optical Flow Features and Multiple Constraints
por: Zhao, Baigan, et al.
Publicado: (2022) -
Draft Genome Sequence of Escherichia coli Strain UMD142
por: Hazen, Tracy H., et al.
Publicado: (2020)