Cargando…
Targeting resources efficiently and justifiably by combining causal machine learning and theory
INTRODUCTION: Efficient allocation of limited resources relies on accurate estimates of potential incremental benefits for each candidate. These heterogeneous treatment effects (HTE) can be estimated with properly specified theory-driven models and observational data that contain all confounders. Us...
Autor principal: | Gur Ali, Ozden |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768181/ https://www.ncbi.nlm.nih.gov/pubmed/36568581 http://dx.doi.org/10.3389/frai.2022.1015604 |
Ejemplares similares
-
Explanatory machine learning for justified trust in human-AI collaboration: Experiments on file deletion recommendations
por: Göbel, Kyra, et al.
Publicado: (2022) -
Editorial: Machine Learning for Water Resources
por: Mariethoz, Gregoire, et al.
Publicado: (2021) -
Causal graph extraction from news: a comparative study of time-series causality learning techniques
por: Maisonnave, Mariano, et al.
Publicado: (2022) -
Editorial: Theory of Mind in Humans and in Machines
por: Langley, Christelle, et al.
Publicado: (2022) -
Machine learning and deep learning approaches in IoT
por: Javed, Abqa, et al.
Publicado: (2023)