Cargando…
Machine learning accelerates identification of lithiated phases in X-ray images of battery hosts
Santos et al. (2022) propose a machine learning-based approach to identify various lithiated phases across lengthscales in X-ray images of battery particles, thus enabling automatic interpretation of such information in much bigger datasets and creating opportunities to unravel previously inaccessib...
Autores principales: | Mistry, Aashutosh, Srinivasan, Venkat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768674/ https://www.ncbi.nlm.nih.gov/pubmed/36569544 http://dx.doi.org/10.1016/j.patter.2022.100654 |
Ejemplares similares
-
Preview of machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery
por: Callaghan, Sarah
Publicado: (2021) -
Practical machine learning for disease diagnosis
por: Summers, Huw D.
Publicado: (2021) -
Shattering cancer with quantum machine learning: A preview
por: Geraci, Joseph
Publicado: (2021) -
Toward machine learning-enhanced high-throughput experimentation for chemistry
por: Callaghan, Sarah
Publicado: (2021) -
Sequencing meets machine learning to fight emerging pathogens: A preview
por: Yakimovich, Artur
Publicado: (2022)