Cargando…
Integrating supercomputing and artificial intelligence for life science
Jiahua Rao and Shuangjia Zheng are Ph.D. students in Prof. Yang’s lab (Supercomputing And AI for Life science, SAIL Lab) at Sun Yat-sen University. They recently developed an interpretable framework to quantitatively assess the interpretability of Graph Neural Network (GNN) and made comparison with...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768675/ https://www.ncbi.nlm.nih.gov/pubmed/36569549 http://dx.doi.org/10.1016/j.patter.2022.100653 |
Sumario: | Jiahua Rao and Shuangjia Zheng are Ph.D. students in Prof. Yang’s lab (Supercomputing And AI for Life science, SAIL Lab) at Sun Yat-sen University. They recently developed an interpretable framework to quantitatively assess the interpretability of Graph Neural Network (GNN) and made comparison with medicinal chemists. Their meaningful benchmarking and rigorous framework would greatly benefit development of new interpretable methods in GNNs. |
---|