Cargando…
Can counterfactual explanations of AI systems’ predictions skew lay users’ causal intuitions about the world? If so, can we correct for that?
Counterfactual (CF) explanations have been employed as one of the modes of explainability in explainable artificial intelligence (AI)—both to increase the transparency of AI systems and to provide recourse. Cognitive science and psychology have pointed out that people regularly use CFs to express ca...
Autores principales: | Tešić, Marko, Hahn, Ulrike |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768678/ https://www.ncbi.nlm.nih.gov/pubmed/36569554 http://dx.doi.org/10.1016/j.patter.2022.100635 |
Ejemplares similares
-
Causal conditionals and counterfactuals
por: Frosch, Caren A., et al.
Publicado: (2012) -
Causal Responsibility and Counterfactuals
por: Lagnado, David A, et al.
Publicado: (2013) -
How people reason with counterfactual and causal explanations for Artificial Intelligence decisions in familiar and unfamiliar domains
por: Celar, Lenart, et al.
Publicado: (2023) -
Model agnostic generation of counterfactual explanations for molecules
por: Wellawatte, Geemi P., et al.
Publicado: (2022) -
PreCoF: counterfactual explanations for fairness
por: Goethals, Sofie, et al.
Publicado: (2023)