Cargando…
Predictive coding is a consequence of energy efficiency in recurrent neural networks
Predictive coding is a promising framework for understanding brain function. It postulates that the brain continuously inhibits predictable sensory input, ensuring preferential processing of surprising elements. A central aspect of this view is its hierarchical connectivity, involving recurrent mess...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768680/ https://www.ncbi.nlm.nih.gov/pubmed/36569556 http://dx.doi.org/10.1016/j.patter.2022.100639 |
Sumario: | Predictive coding is a promising framework for understanding brain function. It postulates that the brain continuously inhibits predictable sensory input, ensuring preferential processing of surprising elements. A central aspect of this view is its hierarchical connectivity, involving recurrent message passing between excitatory bottom-up signals and inhibitory top-down feedback. Here we use computational modeling to demonstrate that such architectural hardwiring is not necessary. Rather, predictive coding is shown to emerge as a consequence of energy efficiency. When training recurrent neural networks to minimize their energy consumption while operating in predictive environments, the networks self-organize into prediction and error units with appropriate inhibitory and excitatory interconnections and learn to inhibit predictable sensory input. Moving beyond the view of purely top-down-driven predictions, we demonstrate, via virtual lesioning experiments, that networks perform predictions on two timescales: fast lateral predictions among sensory units and slower prediction cycles that integrate evidence over time. |
---|