Cargando…

Early prediction and longitudinal modeling of preeclampsia from multiomics

Preeclampsia is a complex disease of pregnancy whose physiopathology remains unclear. We developed machine-learning models for early prediction of preeclampsia (first 16 weeks of pregnancy) and over gestation by analyzing six omics datasets from a longitudinal cohort of pregnant women. For early pre...

Descripción completa

Detalles Bibliográficos
Autores principales: Marić, Ivana, Contrepois, Kévin, Moufarrej, Mira N., Stelzer, Ina A., Feyaerts, Dorien, Han, Xiaoyuan, Tang, Andy, Stanley, Natalie, Wong, Ronald J., Traber, Gavin M., Ellenberger, Mathew, Chang, Alan L., Fallahzadeh, Ramin, Nassar, Huda, Becker, Martin, Xenochristou, Maria, Espinosa, Camilo, De Francesco, Davide, Ghaemi, Mohammad S., Costello, Elizabeth K., Culos, Anthony, Ling, Xuefeng B., Sylvester, Karl G., Darmstadt, Gary L., Winn, Virginia D., Shaw, Gary M., Relman, David A., Quake, Stephen R., Angst, Martin S., Snyder, Michael P., Stevenson, David K., Gaudilliere, Brice, Aghaeepour, Nima
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768681/
https://www.ncbi.nlm.nih.gov/pubmed/36569558
http://dx.doi.org/10.1016/j.patter.2022.100655
_version_ 1784854224640671744
author Marić, Ivana
Contrepois, Kévin
Moufarrej, Mira N.
Stelzer, Ina A.
Feyaerts, Dorien
Han, Xiaoyuan
Tang, Andy
Stanley, Natalie
Wong, Ronald J.
Traber, Gavin M.
Ellenberger, Mathew
Chang, Alan L.
Fallahzadeh, Ramin
Nassar, Huda
Becker, Martin
Xenochristou, Maria
Espinosa, Camilo
De Francesco, Davide
Ghaemi, Mohammad S.
Costello, Elizabeth K.
Culos, Anthony
Ling, Xuefeng B.
Sylvester, Karl G.
Darmstadt, Gary L.
Winn, Virginia D.
Shaw, Gary M.
Relman, David A.
Quake, Stephen R.
Angst, Martin S.
Snyder, Michael P.
Stevenson, David K.
Gaudilliere, Brice
Aghaeepour, Nima
author_facet Marić, Ivana
Contrepois, Kévin
Moufarrej, Mira N.
Stelzer, Ina A.
Feyaerts, Dorien
Han, Xiaoyuan
Tang, Andy
Stanley, Natalie
Wong, Ronald J.
Traber, Gavin M.
Ellenberger, Mathew
Chang, Alan L.
Fallahzadeh, Ramin
Nassar, Huda
Becker, Martin
Xenochristou, Maria
Espinosa, Camilo
De Francesco, Davide
Ghaemi, Mohammad S.
Costello, Elizabeth K.
Culos, Anthony
Ling, Xuefeng B.
Sylvester, Karl G.
Darmstadt, Gary L.
Winn, Virginia D.
Shaw, Gary M.
Relman, David A.
Quake, Stephen R.
Angst, Martin S.
Snyder, Michael P.
Stevenson, David K.
Gaudilliere, Brice
Aghaeepour, Nima
author_sort Marić, Ivana
collection PubMed
description Preeclampsia is a complex disease of pregnancy whose physiopathology remains unclear. We developed machine-learning models for early prediction of preeclampsia (first 16 weeks of pregnancy) and over gestation by analyzing six omics datasets from a longitudinal cohort of pregnant women. For early pregnancy, a prediction model using nine urine metabolites had the highest accuracy and was validated on an independent cohort (area under the receiver-operating characteristic curve [AUC] = 0.88, 95% confidence interval [CI] [0.76, 0.99] cross-validated; AUC = 0.83, 95% CI [0.62,1] validated). Univariate analysis demonstrated statistical significance of identified metabolites. An integrated multiomics model further improved accuracy (AUC = 0.94). Several biological pathways were identified including tryptophan, caffeine, and arachidonic acid metabolisms. Integration with immune cytometry data suggested novel associations between immune and proteomic dynamics. While further validation in a larger population is necessary, these encouraging results can serve as a basis for a simple, early diagnostic test for preeclampsia.
format Online
Article
Text
id pubmed-9768681
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-97686812022-12-22 Early prediction and longitudinal modeling of preeclampsia from multiomics Marić, Ivana Contrepois, Kévin Moufarrej, Mira N. Stelzer, Ina A. Feyaerts, Dorien Han, Xiaoyuan Tang, Andy Stanley, Natalie Wong, Ronald J. Traber, Gavin M. Ellenberger, Mathew Chang, Alan L. Fallahzadeh, Ramin Nassar, Huda Becker, Martin Xenochristou, Maria Espinosa, Camilo De Francesco, Davide Ghaemi, Mohammad S. Costello, Elizabeth K. Culos, Anthony Ling, Xuefeng B. Sylvester, Karl G. Darmstadt, Gary L. Winn, Virginia D. Shaw, Gary M. Relman, David A. Quake, Stephen R. Angst, Martin S. Snyder, Michael P. Stevenson, David K. Gaudilliere, Brice Aghaeepour, Nima Patterns (N Y) Article Preeclampsia is a complex disease of pregnancy whose physiopathology remains unclear. We developed machine-learning models for early prediction of preeclampsia (first 16 weeks of pregnancy) and over gestation by analyzing six omics datasets from a longitudinal cohort of pregnant women. For early pregnancy, a prediction model using nine urine metabolites had the highest accuracy and was validated on an independent cohort (area under the receiver-operating characteristic curve [AUC] = 0.88, 95% confidence interval [CI] [0.76, 0.99] cross-validated; AUC = 0.83, 95% CI [0.62,1] validated). Univariate analysis demonstrated statistical significance of identified metabolites. An integrated multiomics model further improved accuracy (AUC = 0.94). Several biological pathways were identified including tryptophan, caffeine, and arachidonic acid metabolisms. Integration with immune cytometry data suggested novel associations between immune and proteomic dynamics. While further validation in a larger population is necessary, these encouraging results can serve as a basis for a simple, early diagnostic test for preeclampsia. Elsevier 2022-12-09 /pmc/articles/PMC9768681/ /pubmed/36569558 http://dx.doi.org/10.1016/j.patter.2022.100655 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Marić, Ivana
Contrepois, Kévin
Moufarrej, Mira N.
Stelzer, Ina A.
Feyaerts, Dorien
Han, Xiaoyuan
Tang, Andy
Stanley, Natalie
Wong, Ronald J.
Traber, Gavin M.
Ellenberger, Mathew
Chang, Alan L.
Fallahzadeh, Ramin
Nassar, Huda
Becker, Martin
Xenochristou, Maria
Espinosa, Camilo
De Francesco, Davide
Ghaemi, Mohammad S.
Costello, Elizabeth K.
Culos, Anthony
Ling, Xuefeng B.
Sylvester, Karl G.
Darmstadt, Gary L.
Winn, Virginia D.
Shaw, Gary M.
Relman, David A.
Quake, Stephen R.
Angst, Martin S.
Snyder, Michael P.
Stevenson, David K.
Gaudilliere, Brice
Aghaeepour, Nima
Early prediction and longitudinal modeling of preeclampsia from multiomics
title Early prediction and longitudinal modeling of preeclampsia from multiomics
title_full Early prediction and longitudinal modeling of preeclampsia from multiomics
title_fullStr Early prediction and longitudinal modeling of preeclampsia from multiomics
title_full_unstemmed Early prediction and longitudinal modeling of preeclampsia from multiomics
title_short Early prediction and longitudinal modeling of preeclampsia from multiomics
title_sort early prediction and longitudinal modeling of preeclampsia from multiomics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768681/
https://www.ncbi.nlm.nih.gov/pubmed/36569558
http://dx.doi.org/10.1016/j.patter.2022.100655
work_keys_str_mv AT maricivana earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT contrepoiskevin earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT moufarrejmiran earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT stelzerinaa earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT feyaertsdorien earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT hanxiaoyuan earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT tangandy earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT stanleynatalie earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT wongronaldj earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT trabergavinm earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT ellenbergermathew earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT changalanl earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT fallahzadehramin earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT nassarhuda earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT beckermartin earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT xenochristoumaria earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT espinosacamilo earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT defrancescodavide earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT ghaemimohammads earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT costelloelizabethk earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT culosanthony earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT lingxuefengb earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT sylvesterkarlg earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT darmstadtgaryl earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT winnvirginiad earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT shawgarym earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT relmandavida earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT quakestephenr earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT angstmartins earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT snydermichaelp earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT stevensondavidk earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT gaudillierebrice earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics
AT aghaeepournima earlypredictionandlongitudinalmodelingofpreeclampsiafrommultiomics