Cargando…

GeoSPM: Geostatistical parametric mapping for medicine

The characteristics and determinants of health and disease are often organized in space, reflecting our spatially extended nature. Understanding the influence of such factors requires models capable of capturing spatial relations. Drawing on statistical parametric mapping, a framework for topologica...

Descripción completa

Detalles Bibliográficos
Autores principales: Engleitner, Holger, Jha, Ashwani, Pinilla, Marta Suarez, Nelson, Amy, Herron, Daniel, Rees, Geraint, Friston, Karl, Rossor, Martin, Nachev, Parashkev
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768692/
https://www.ncbi.nlm.nih.gov/pubmed/36569555
http://dx.doi.org/10.1016/j.patter.2022.100656
_version_ 1784854225824514048
author Engleitner, Holger
Jha, Ashwani
Pinilla, Marta Suarez
Nelson, Amy
Herron, Daniel
Rees, Geraint
Friston, Karl
Rossor, Martin
Nachev, Parashkev
author_facet Engleitner, Holger
Jha, Ashwani
Pinilla, Marta Suarez
Nelson, Amy
Herron, Daniel
Rees, Geraint
Friston, Karl
Rossor, Martin
Nachev, Parashkev
author_sort Engleitner, Holger
collection PubMed
description The characteristics and determinants of health and disease are often organized in space, reflecting our spatially extended nature. Understanding the influence of such factors requires models capable of capturing spatial relations. Drawing on statistical parametric mapping, a framework for topological inference well established in the realm of neuroimaging, we propose and validate an approach to the spatial analysis of diverse clinical data—GeoSPM—based on differential geometry and random field theory. We evaluate GeoSPM across an extensive array of synthetic simulations encompassing diverse spatial relationships, sampling, and corruption by noise, and demonstrate its application on large-scale data from UK Biobank. GeoSPM is readily interpretable, can be implemented with ease by non-specialists, enables flexible modeling of complex spatial relations, exhibits robustness to noise and under-sampling, offers principled criteria of statistical significance, and is through computational efficiency readily scalable to large datasets. We provide a complete, open-source software implementation.
format Online
Article
Text
id pubmed-9768692
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-97686922022-12-22 GeoSPM: Geostatistical parametric mapping for medicine Engleitner, Holger Jha, Ashwani Pinilla, Marta Suarez Nelson, Amy Herron, Daniel Rees, Geraint Friston, Karl Rossor, Martin Nachev, Parashkev Patterns (N Y) Article The characteristics and determinants of health and disease are often organized in space, reflecting our spatially extended nature. Understanding the influence of such factors requires models capable of capturing spatial relations. Drawing on statistical parametric mapping, a framework for topological inference well established in the realm of neuroimaging, we propose and validate an approach to the spatial analysis of diverse clinical data—GeoSPM—based on differential geometry and random field theory. We evaluate GeoSPM across an extensive array of synthetic simulations encompassing diverse spatial relationships, sampling, and corruption by noise, and demonstrate its application on large-scale data from UK Biobank. GeoSPM is readily interpretable, can be implemented with ease by non-specialists, enables flexible modeling of complex spatial relations, exhibits robustness to noise and under-sampling, offers principled criteria of statistical significance, and is through computational efficiency readily scalable to large datasets. We provide a complete, open-source software implementation. Elsevier 2022-12-09 /pmc/articles/PMC9768692/ /pubmed/36569555 http://dx.doi.org/10.1016/j.patter.2022.100656 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Engleitner, Holger
Jha, Ashwani
Pinilla, Marta Suarez
Nelson, Amy
Herron, Daniel
Rees, Geraint
Friston, Karl
Rossor, Martin
Nachev, Parashkev
GeoSPM: Geostatistical parametric mapping for medicine
title GeoSPM: Geostatistical parametric mapping for medicine
title_full GeoSPM: Geostatistical parametric mapping for medicine
title_fullStr GeoSPM: Geostatistical parametric mapping for medicine
title_full_unstemmed GeoSPM: Geostatistical parametric mapping for medicine
title_short GeoSPM: Geostatistical parametric mapping for medicine
title_sort geospm: geostatistical parametric mapping for medicine
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768692/
https://www.ncbi.nlm.nih.gov/pubmed/36569555
http://dx.doi.org/10.1016/j.patter.2022.100656
work_keys_str_mv AT engleitnerholger geospmgeostatisticalparametricmappingformedicine
AT jhaashwani geospmgeostatisticalparametricmappingformedicine
AT pinillamartasuarez geospmgeostatisticalparametricmappingformedicine
AT nelsonamy geospmgeostatisticalparametricmappingformedicine
AT herrondaniel geospmgeostatisticalparametricmappingformedicine
AT reesgeraint geospmgeostatisticalparametricmappingformedicine
AT fristonkarl geospmgeostatisticalparametricmappingformedicine
AT rossormartin geospmgeostatisticalparametricmappingformedicine
AT nachevparashkev geospmgeostatisticalparametricmappingformedicine