Cargando…
Identifying and evaluating barriers for the implementation of machine learning in the intensive care unit
BACKGROUND: Despite apparent promise and the availability of numerous examples in the literature, machine learning models are rarely used in practice in ICU units. This mismatch suggests that there are poorly understood barriers preventing uptake, which we aim to identify. METHODS: We begin with a q...
Autores principales: | D’Hondt, Ellie, Ashby, Thomas J., Chakroun, Imen, Koninckx, Thomas, Wuyts, Roel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768782/ https://www.ncbi.nlm.nih.gov/pubmed/36543940 http://dx.doi.org/10.1038/s43856-022-00225-1 |
Ejemplares similares
-
Machine Learning Techniques to Identify Antimicrobial Resistance in the Intensive Care Unit
por: Martínez-Agüero, Sergio, et al.
Publicado: (2019) -
A software package for efficient patient trajectory analysis applied to analyzing bladder cancer development
por: Herzeel, Charlotte, et al.
Publicado: (2023) -
Machine Learning Model for the Prediction of Hemorrhage in Intensive Care Units
por: Kang, Sora, et al.
Publicado: (2022) -
Implementing quality indicators in intensive care units: exploring barriers to and facilitators of behaviour change
por: de Vos, Maartje LG, et al.
Publicado: (2010) -
Impact of COVID-19 on nursing time in intensive care units in Belgium
por: Bruyneel, Arnaud, et al.
Publicado: (2021)