Cargando…

HEC-ASD: a hybrid ensemble-based classification model for predicting autism spectrum disorder disease genes

PURPOSE: Autism spectrum disorder (ASD) is the most prevalent disease today. The causes of its infection may be attributed to genetic causes by 80% and environmental causes by 20%. In spite of this, the majority of the current research is concerned with environmental causes, and the least proportion...

Descripción completa

Detalles Bibliográficos
Autores principales: Ismail, Eman, Gad, Walaa, Hashem, Mohamed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768984/
https://www.ncbi.nlm.nih.gov/pubmed/36544099
http://dx.doi.org/10.1186/s12859-022-05099-7
Descripción
Sumario:PURPOSE: Autism spectrum disorder (ASD) is the most prevalent disease today. The causes of its infection may be attributed to genetic causes by 80% and environmental causes by 20%. In spite of this, the majority of the current research is concerned with environmental causes, and the least proportion with the genetic causes of the disease. Autism is a complex disease, which makes it difficult to identify the genes that cause the disease. METHODS: Hybrid ensemble-based classification (HEC-ASD) model for predicting ASD genes using gradient boosting machines is proposed. The proposed model utilizes gene ontology (GO) to construct a gene functional similarity matrix using hybrid gene similarity (HGS) method. HGS measures the semantic similarity between genes effectively. It combines the graph-based method, such as Wang method with the number of directed children’s nodes of gene term from GO. Moreover, an ensemble gradient boosting classifier is adapted to enhance the prediction of genes forming a robust classification model. RESULTS: The proposed model is evaluated using the Simons Foundation Autism Research Initiative (SFARI) gene database. The experimental results are promising as they improve the classification performance for predicting ASD genes. The results are compared with other approaches that used gene regulatory network (GRN), protein to protein interaction network (PPI), or GO. The HEC-ASD model reaches the highest prediction accuracy of 0.88% using ensemble learning classifiers. CONCLUSION: The proposed model demonstrates that ensemble learning technique using gradient boosting is effective in predicting autism spectrum disorder genes. Moreover, the HEC-ASD model utilized GO rather than using PPI network and GRN.