Cargando…

Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds – a step towards ligament repair applications

The incidence of anterior cruciate ligament (ACL) ruptures is approximately 50 per 100,000 people. ACL rupture repair methods that offer better biomechanics have the potential to reduce long term osteoarthritis. To improve ACL regeneration biomechanically similar, biocompatible and biodegradable tis...

Descripción completa

Detalles Bibliográficos
Autores principales: Khamplod, Thammarit, Winterburn, James B., Cartmell, Sarah H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769142/
https://www.ncbi.nlm.nih.gov/pubmed/36570876
http://dx.doi.org/10.1080/14686996.2022.2149034
_version_ 1784854324156825600
author Khamplod, Thammarit
Winterburn, James B.
Cartmell, Sarah H.
author_facet Khamplod, Thammarit
Winterburn, James B.
Cartmell, Sarah H.
author_sort Khamplod, Thammarit
collection PubMed
description The incidence of anterior cruciate ligament (ACL) ruptures is approximately 50 per 100,000 people. ACL rupture repair methods that offer better biomechanics have the potential to reduce long term osteoarthritis. To improve ACL regeneration biomechanically similar, biocompatible and biodegradable tissue scaffolds are required. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), with high 3-hydroxyvalerate (3HV) content, based scaffold materials have been developed, with the advantages of traditional tissue engineering scaffolds combined with attractive mechanical properties, e.g., elasticity and biodegradability. PHBV with 3HV fractions of 0 to 100 mol% were produced in a controlled manner allowing specific compositions to be targeted, giving control over material properties. In conjunction electrospinning conditions were altered, to manipulate the degree of fibre alignment, with increasing collector rotating speed used to obtain random and aligned PHBV fibres. The PHBV based materials produced were characterised, with mechanical properties, thermal properties and surface morphology being studied. An electrospun PHBV fibre mat with 50 mol% 3HV content shows a significant increase in elasticity compared to those with lower 3HV content and could be fabricated into aligned fibres. Biocompatibility testing with L929 fibroblasts demonstrates good cell viability, with the aligned fibre network promoting fibroblast alignment in the axial fibre direction, desirable for ACL repair applications. Dynamic load testing shows that the 50 mol% 3HV PHBV material produced can withstand cyclic loading with reasonable resilience. Electrospun PHBV can be produced with low batch variability and tailored, application specific properties, giving these biomaterials promise in tissue scaffold applications where aligned fibre networks are desired, such as ACL regeneration.   
format Online
Article
Text
id pubmed-9769142
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-97691422022-12-22 Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds – a step towards ligament repair applications Khamplod, Thammarit Winterburn, James B. Cartmell, Sarah H. Sci Technol Adv Mater Bio-Inspired and Biomedical Materials The incidence of anterior cruciate ligament (ACL) ruptures is approximately 50 per 100,000 people. ACL rupture repair methods that offer better biomechanics have the potential to reduce long term osteoarthritis. To improve ACL regeneration biomechanically similar, biocompatible and biodegradable tissue scaffolds are required. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), with high 3-hydroxyvalerate (3HV) content, based scaffold materials have been developed, with the advantages of traditional tissue engineering scaffolds combined with attractive mechanical properties, e.g., elasticity and biodegradability. PHBV with 3HV fractions of 0 to 100 mol% were produced in a controlled manner allowing specific compositions to be targeted, giving control over material properties. In conjunction electrospinning conditions were altered, to manipulate the degree of fibre alignment, with increasing collector rotating speed used to obtain random and aligned PHBV fibres. The PHBV based materials produced were characterised, with mechanical properties, thermal properties and surface morphology being studied. An electrospun PHBV fibre mat with 50 mol% 3HV content shows a significant increase in elasticity compared to those with lower 3HV content and could be fabricated into aligned fibres. Biocompatibility testing with L929 fibroblasts demonstrates good cell viability, with the aligned fibre network promoting fibroblast alignment in the axial fibre direction, desirable for ACL repair applications. Dynamic load testing shows that the 50 mol% 3HV PHBV material produced can withstand cyclic loading with reasonable resilience. Electrospun PHBV can be produced with low batch variability and tailored, application specific properties, giving these biomaterials promise in tissue scaffold applications where aligned fibre networks are desired, such as ACL regeneration.    Taylor & Francis 2022-12-19 /pmc/articles/PMC9769142/ /pubmed/36570876 http://dx.doi.org/10.1080/14686996.2022.2149034 Text en © 2022 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Bio-Inspired and Biomedical Materials
Khamplod, Thammarit
Winterburn, James B.
Cartmell, Sarah H.
Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds – a step towards ligament repair applications
title Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds – a step towards ligament repair applications
title_full Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds – a step towards ligament repair applications
title_fullStr Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds – a step towards ligament repair applications
title_full_unstemmed Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds – a step towards ligament repair applications
title_short Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds – a step towards ligament repair applications
title_sort electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds – a step towards ligament repair applications
topic Bio-Inspired and Biomedical Materials
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769142/
https://www.ncbi.nlm.nih.gov/pubmed/36570876
http://dx.doi.org/10.1080/14686996.2022.2149034
work_keys_str_mv AT khamplodthammarit electrospunpoly3hydroxybutyrateco3hydroxyvaleratescaffoldsasteptowardsligamentrepairapplications
AT winterburnjamesb electrospunpoly3hydroxybutyrateco3hydroxyvaleratescaffoldsasteptowardsligamentrepairapplications
AT cartmellsarahh electrospunpoly3hydroxybutyrateco3hydroxyvaleratescaffoldsasteptowardsligamentrepairapplications