Cargando…

Generalisable long COVID subtypes: Findings from the NIH N3C and RECOVER programmes

BACKGROUND: Stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow precision clinical management strategies. However, long COVID is incompletely understood and characterised by a wide range of manifestations that are difficult to analyse computa...

Descripción completa

Detalles Bibliográficos
Autores principales: Reese, Justin T., Blau, Hannah, Casiraghi, Elena, Bergquist, Timothy, Loomba, Johanna J., Callahan, Tiffany J., Laraway, Bryan, Antonescu, Corneliu, Coleman, Ben, Gargano, Michael, Wilkins, Kenneth J., Cappelletti, Luca, Fontana, Tommaso, Ammar, Nariman, Antony, Blessy, Murali, T.M., Caufield, J. Harry, Karlebach, Guy, McMurry, Julie A., Williams, Andrew, Moffitt, Richard, Banerjee, Jineta, Solomonides, Anthony E., Davis, Hannah, Kostka, Kristin, Valentini, Giorgio, Sahner, David, Chute, Christopher G., Madlock-Brown, Charisse, Haendel, Melissa A., Robinson, Peter N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769411/
https://www.ncbi.nlm.nih.gov/pubmed/36563487
http://dx.doi.org/10.1016/j.ebiom.2022.104413
_version_ 1784854367490277376
author Reese, Justin T.
Blau, Hannah
Casiraghi, Elena
Bergquist, Timothy
Loomba, Johanna J.
Callahan, Tiffany J.
Laraway, Bryan
Antonescu, Corneliu
Coleman, Ben
Gargano, Michael
Wilkins, Kenneth J.
Cappelletti, Luca
Fontana, Tommaso
Ammar, Nariman
Antony, Blessy
Murali, T.M.
Caufield, J. Harry
Karlebach, Guy
McMurry, Julie A.
Williams, Andrew
Moffitt, Richard
Banerjee, Jineta
Solomonides, Anthony E.
Davis, Hannah
Kostka, Kristin
Valentini, Giorgio
Sahner, David
Chute, Christopher G.
Madlock-Brown, Charisse
Haendel, Melissa A.
Robinson, Peter N.
author_facet Reese, Justin T.
Blau, Hannah
Casiraghi, Elena
Bergquist, Timothy
Loomba, Johanna J.
Callahan, Tiffany J.
Laraway, Bryan
Antonescu, Corneliu
Coleman, Ben
Gargano, Michael
Wilkins, Kenneth J.
Cappelletti, Luca
Fontana, Tommaso
Ammar, Nariman
Antony, Blessy
Murali, T.M.
Caufield, J. Harry
Karlebach, Guy
McMurry, Julie A.
Williams, Andrew
Moffitt, Richard
Banerjee, Jineta
Solomonides, Anthony E.
Davis, Hannah
Kostka, Kristin
Valentini, Giorgio
Sahner, David
Chute, Christopher G.
Madlock-Brown, Charisse
Haendel, Melissa A.
Robinson, Peter N.
author_sort Reese, Justin T.
collection PubMed
description BACKGROUND: Stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow precision clinical management strategies. However, long COVID is incompletely understood and characterised by a wide range of manifestations that are difficult to analyse computationally. Additionally, the generalisability of machine learning classification of COVID-19 clinical outcomes has rarely been tested. METHODS: We present a method for computationally modelling PASC phenotype data based on electronic healthcare records (EHRs) and for assessing pairwise phenotypic similarity between patients using semantic similarity. Our approach defines a nonlinear similarity function that maps from a feature space of phenotypic abnormalities to a matrix of pairwise patient similarity that can be clustered using unsupervised machine learning. FINDINGS: We found six clusters of PASC patients, each with distinct profiles of phenotypic abnormalities, including clusters with distinct pulmonary, neuropsychiatric, and cardiovascular abnormalities, and a cluster associated with broad, severe manifestations and increased mortality. There was significant association of cluster membership with a range of pre-existing conditions and measures of severity during acute COVID-19. We assigned new patients from other healthcare centres to clusters by maximum semantic similarity to the original patients, and showed that the clusters were generalisable across different hospital systems. The increased mortality rate originally identified in one cluster was consistently observed in patients assigned to that cluster in other hospital systems. INTERPRETATION: Semantic phenotypic clustering provides a foundation for assigning patients to stratified subgroups for natural history or therapy studies on PASC. FUNDING: 10.13039/100000052NIH (TR002306/OT2HL161847-01/OD011883/HG010860), 10.13039/100000015U.S.D.O.E. (DE-AC02-05CH11231), Donald A. Roux Family Fund at 10.13039/100005946Jackson Laboratory, Marsico Family at 10.13039/100014450CU Anschutz.
format Online
Article
Text
id pubmed-9769411
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-97694112022-12-22 Generalisable long COVID subtypes: Findings from the NIH N3C and RECOVER programmes Reese, Justin T. Blau, Hannah Casiraghi, Elena Bergquist, Timothy Loomba, Johanna J. Callahan, Tiffany J. Laraway, Bryan Antonescu, Corneliu Coleman, Ben Gargano, Michael Wilkins, Kenneth J. Cappelletti, Luca Fontana, Tommaso Ammar, Nariman Antony, Blessy Murali, T.M. Caufield, J. Harry Karlebach, Guy McMurry, Julie A. Williams, Andrew Moffitt, Richard Banerjee, Jineta Solomonides, Anthony E. Davis, Hannah Kostka, Kristin Valentini, Giorgio Sahner, David Chute, Christopher G. Madlock-Brown, Charisse Haendel, Melissa A. Robinson, Peter N. eBioMedicine Articles BACKGROUND: Stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow precision clinical management strategies. However, long COVID is incompletely understood and characterised by a wide range of manifestations that are difficult to analyse computationally. Additionally, the generalisability of machine learning classification of COVID-19 clinical outcomes has rarely been tested. METHODS: We present a method for computationally modelling PASC phenotype data based on electronic healthcare records (EHRs) and for assessing pairwise phenotypic similarity between patients using semantic similarity. Our approach defines a nonlinear similarity function that maps from a feature space of phenotypic abnormalities to a matrix of pairwise patient similarity that can be clustered using unsupervised machine learning. FINDINGS: We found six clusters of PASC patients, each with distinct profiles of phenotypic abnormalities, including clusters with distinct pulmonary, neuropsychiatric, and cardiovascular abnormalities, and a cluster associated with broad, severe manifestations and increased mortality. There was significant association of cluster membership with a range of pre-existing conditions and measures of severity during acute COVID-19. We assigned new patients from other healthcare centres to clusters by maximum semantic similarity to the original patients, and showed that the clusters were generalisable across different hospital systems. The increased mortality rate originally identified in one cluster was consistently observed in patients assigned to that cluster in other hospital systems. INTERPRETATION: Semantic phenotypic clustering provides a foundation for assigning patients to stratified subgroups for natural history or therapy studies on PASC. FUNDING: 10.13039/100000052NIH (TR002306/OT2HL161847-01/OD011883/HG010860), 10.13039/100000015U.S.D.O.E. (DE-AC02-05CH11231), Donald A. Roux Family Fund at 10.13039/100005946Jackson Laboratory, Marsico Family at 10.13039/100014450CU Anschutz. Elsevier 2022-12-21 /pmc/articles/PMC9769411/ /pubmed/36563487 http://dx.doi.org/10.1016/j.ebiom.2022.104413 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Articles
Reese, Justin T.
Blau, Hannah
Casiraghi, Elena
Bergquist, Timothy
Loomba, Johanna J.
Callahan, Tiffany J.
Laraway, Bryan
Antonescu, Corneliu
Coleman, Ben
Gargano, Michael
Wilkins, Kenneth J.
Cappelletti, Luca
Fontana, Tommaso
Ammar, Nariman
Antony, Blessy
Murali, T.M.
Caufield, J. Harry
Karlebach, Guy
McMurry, Julie A.
Williams, Andrew
Moffitt, Richard
Banerjee, Jineta
Solomonides, Anthony E.
Davis, Hannah
Kostka, Kristin
Valentini, Giorgio
Sahner, David
Chute, Christopher G.
Madlock-Brown, Charisse
Haendel, Melissa A.
Robinson, Peter N.
Generalisable long COVID subtypes: Findings from the NIH N3C and RECOVER programmes
title Generalisable long COVID subtypes: Findings from the NIH N3C and RECOVER programmes
title_full Generalisable long COVID subtypes: Findings from the NIH N3C and RECOVER programmes
title_fullStr Generalisable long COVID subtypes: Findings from the NIH N3C and RECOVER programmes
title_full_unstemmed Generalisable long COVID subtypes: Findings from the NIH N3C and RECOVER programmes
title_short Generalisable long COVID subtypes: Findings from the NIH N3C and RECOVER programmes
title_sort generalisable long covid subtypes: findings from the nih n3c and recover programmes
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769411/
https://www.ncbi.nlm.nih.gov/pubmed/36563487
http://dx.doi.org/10.1016/j.ebiom.2022.104413
work_keys_str_mv AT reesejustint generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT blauhannah generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT casiraghielena generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT bergquisttimothy generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT loombajohannaj generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT callahantiffanyj generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT larawaybryan generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT antonescucorneliu generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT colemanben generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT garganomichael generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT wilkinskennethj generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT cappellettiluca generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT fontanatommaso generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT ammarnariman generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT antonyblessy generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT muralitm generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT caufieldjharry generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT karlebachguy generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT mcmurryjuliea generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT williamsandrew generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT moffittrichard generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT banerjeejineta generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT solomonidesanthonye generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT davishannah generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT kostkakristin generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT valentinigiorgio generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT sahnerdavid generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT chutechristopherg generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT madlockbrowncharisse generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT haendelmelissaa generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT robinsonpetern generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes
AT generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes