Cargando…
Generalisable long COVID subtypes: Findings from the NIH N3C and RECOVER programmes
BACKGROUND: Stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow precision clinical management strategies. However, long COVID is incompletely understood and characterised by a wide range of manifestations that are difficult to analyse computa...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769411/ https://www.ncbi.nlm.nih.gov/pubmed/36563487 http://dx.doi.org/10.1016/j.ebiom.2022.104413 |
_version_ | 1784854367490277376 |
---|---|
author | Reese, Justin T. Blau, Hannah Casiraghi, Elena Bergquist, Timothy Loomba, Johanna J. Callahan, Tiffany J. Laraway, Bryan Antonescu, Corneliu Coleman, Ben Gargano, Michael Wilkins, Kenneth J. Cappelletti, Luca Fontana, Tommaso Ammar, Nariman Antony, Blessy Murali, T.M. Caufield, J. Harry Karlebach, Guy McMurry, Julie A. Williams, Andrew Moffitt, Richard Banerjee, Jineta Solomonides, Anthony E. Davis, Hannah Kostka, Kristin Valentini, Giorgio Sahner, David Chute, Christopher G. Madlock-Brown, Charisse Haendel, Melissa A. Robinson, Peter N. |
author_facet | Reese, Justin T. Blau, Hannah Casiraghi, Elena Bergquist, Timothy Loomba, Johanna J. Callahan, Tiffany J. Laraway, Bryan Antonescu, Corneliu Coleman, Ben Gargano, Michael Wilkins, Kenneth J. Cappelletti, Luca Fontana, Tommaso Ammar, Nariman Antony, Blessy Murali, T.M. Caufield, J. Harry Karlebach, Guy McMurry, Julie A. Williams, Andrew Moffitt, Richard Banerjee, Jineta Solomonides, Anthony E. Davis, Hannah Kostka, Kristin Valentini, Giorgio Sahner, David Chute, Christopher G. Madlock-Brown, Charisse Haendel, Melissa A. Robinson, Peter N. |
author_sort | Reese, Justin T. |
collection | PubMed |
description | BACKGROUND: Stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow precision clinical management strategies. However, long COVID is incompletely understood and characterised by a wide range of manifestations that are difficult to analyse computationally. Additionally, the generalisability of machine learning classification of COVID-19 clinical outcomes has rarely been tested. METHODS: We present a method for computationally modelling PASC phenotype data based on electronic healthcare records (EHRs) and for assessing pairwise phenotypic similarity between patients using semantic similarity. Our approach defines a nonlinear similarity function that maps from a feature space of phenotypic abnormalities to a matrix of pairwise patient similarity that can be clustered using unsupervised machine learning. FINDINGS: We found six clusters of PASC patients, each with distinct profiles of phenotypic abnormalities, including clusters with distinct pulmonary, neuropsychiatric, and cardiovascular abnormalities, and a cluster associated with broad, severe manifestations and increased mortality. There was significant association of cluster membership with a range of pre-existing conditions and measures of severity during acute COVID-19. We assigned new patients from other healthcare centres to clusters by maximum semantic similarity to the original patients, and showed that the clusters were generalisable across different hospital systems. The increased mortality rate originally identified in one cluster was consistently observed in patients assigned to that cluster in other hospital systems. INTERPRETATION: Semantic phenotypic clustering provides a foundation for assigning patients to stratified subgroups for natural history or therapy studies on PASC. FUNDING: 10.13039/100000052NIH (TR002306/OT2HL161847-01/OD011883/HG010860), 10.13039/100000015U.S.D.O.E. (DE-AC02-05CH11231), Donald A. Roux Family Fund at 10.13039/100005946Jackson Laboratory, Marsico Family at 10.13039/100014450CU Anschutz. |
format | Online Article Text |
id | pubmed-9769411 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-97694112022-12-22 Generalisable long COVID subtypes: Findings from the NIH N3C and RECOVER programmes Reese, Justin T. Blau, Hannah Casiraghi, Elena Bergquist, Timothy Loomba, Johanna J. Callahan, Tiffany J. Laraway, Bryan Antonescu, Corneliu Coleman, Ben Gargano, Michael Wilkins, Kenneth J. Cappelletti, Luca Fontana, Tommaso Ammar, Nariman Antony, Blessy Murali, T.M. Caufield, J. Harry Karlebach, Guy McMurry, Julie A. Williams, Andrew Moffitt, Richard Banerjee, Jineta Solomonides, Anthony E. Davis, Hannah Kostka, Kristin Valentini, Giorgio Sahner, David Chute, Christopher G. Madlock-Brown, Charisse Haendel, Melissa A. Robinson, Peter N. eBioMedicine Articles BACKGROUND: Stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow precision clinical management strategies. However, long COVID is incompletely understood and characterised by a wide range of manifestations that are difficult to analyse computationally. Additionally, the generalisability of machine learning classification of COVID-19 clinical outcomes has rarely been tested. METHODS: We present a method for computationally modelling PASC phenotype data based on electronic healthcare records (EHRs) and for assessing pairwise phenotypic similarity between patients using semantic similarity. Our approach defines a nonlinear similarity function that maps from a feature space of phenotypic abnormalities to a matrix of pairwise patient similarity that can be clustered using unsupervised machine learning. FINDINGS: We found six clusters of PASC patients, each with distinct profiles of phenotypic abnormalities, including clusters with distinct pulmonary, neuropsychiatric, and cardiovascular abnormalities, and a cluster associated with broad, severe manifestations and increased mortality. There was significant association of cluster membership with a range of pre-existing conditions and measures of severity during acute COVID-19. We assigned new patients from other healthcare centres to clusters by maximum semantic similarity to the original patients, and showed that the clusters were generalisable across different hospital systems. The increased mortality rate originally identified in one cluster was consistently observed in patients assigned to that cluster in other hospital systems. INTERPRETATION: Semantic phenotypic clustering provides a foundation for assigning patients to stratified subgroups for natural history or therapy studies on PASC. FUNDING: 10.13039/100000052NIH (TR002306/OT2HL161847-01/OD011883/HG010860), 10.13039/100000015U.S.D.O.E. (DE-AC02-05CH11231), Donald A. Roux Family Fund at 10.13039/100005946Jackson Laboratory, Marsico Family at 10.13039/100014450CU Anschutz. Elsevier 2022-12-21 /pmc/articles/PMC9769411/ /pubmed/36563487 http://dx.doi.org/10.1016/j.ebiom.2022.104413 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Articles Reese, Justin T. Blau, Hannah Casiraghi, Elena Bergquist, Timothy Loomba, Johanna J. Callahan, Tiffany J. Laraway, Bryan Antonescu, Corneliu Coleman, Ben Gargano, Michael Wilkins, Kenneth J. Cappelletti, Luca Fontana, Tommaso Ammar, Nariman Antony, Blessy Murali, T.M. Caufield, J. Harry Karlebach, Guy McMurry, Julie A. Williams, Andrew Moffitt, Richard Banerjee, Jineta Solomonides, Anthony E. Davis, Hannah Kostka, Kristin Valentini, Giorgio Sahner, David Chute, Christopher G. Madlock-Brown, Charisse Haendel, Melissa A. Robinson, Peter N. Generalisable long COVID subtypes: Findings from the NIH N3C and RECOVER programmes |
title | Generalisable long COVID subtypes: Findings from the NIH N3C and RECOVER programmes |
title_full | Generalisable long COVID subtypes: Findings from the NIH N3C and RECOVER programmes |
title_fullStr | Generalisable long COVID subtypes: Findings from the NIH N3C and RECOVER programmes |
title_full_unstemmed | Generalisable long COVID subtypes: Findings from the NIH N3C and RECOVER programmes |
title_short | Generalisable long COVID subtypes: Findings from the NIH N3C and RECOVER programmes |
title_sort | generalisable long covid subtypes: findings from the nih n3c and recover programmes |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769411/ https://www.ncbi.nlm.nih.gov/pubmed/36563487 http://dx.doi.org/10.1016/j.ebiom.2022.104413 |
work_keys_str_mv | AT reesejustint generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT blauhannah generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT casiraghielena generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT bergquisttimothy generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT loombajohannaj generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT callahantiffanyj generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT larawaybryan generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT antonescucorneliu generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT colemanben generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT garganomichael generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT wilkinskennethj generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT cappellettiluca generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT fontanatommaso generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT ammarnariman generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT antonyblessy generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT muralitm generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT caufieldjharry generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT karlebachguy generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT mcmurryjuliea generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT williamsandrew generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT moffittrichard generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT banerjeejineta generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT solomonidesanthonye generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT davishannah generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT kostkakristin generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT valentinigiorgio generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT sahnerdavid generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT chutechristopherg generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT madlockbrowncharisse generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT haendelmelissaa generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT robinsonpetern generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes AT generalisablelongcovidsubtypesfindingsfromthenihn3candrecoverprogrammes |