Cargando…

Whole-Genome Sequencing-Based Species Classification, Multilocus Sequence Typing, and Antimicrobial Resistance Mechanism Analysis of the Enterobacter cloacae Complex in Southern China

Members of the Enterobacter cloacae complex (ECC) are important opportunistic nosocomial pathogens that are associated with a great variety of infections. Due to limited data on the genome-based classification of species and investigation of resistance mechanisms, in this work, we collected 172 clin...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Xu, Zhu, Mei, Li, Yaxuan, Huang, Dawei, Wang, Lan, Yan, Chunxia, Zhang, Linhua, Dong, Fubo, Lu, Junwan, Lin, Xi, Li, Kewei, Bao, Qiyu, Cong, Cheng, Pan, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769718/
https://www.ncbi.nlm.nih.gov/pubmed/36350178
http://dx.doi.org/10.1128/spectrum.02160-22
_version_ 1784854432348897280
author Dong, Xu
Zhu, Mei
Li, Yaxuan
Huang, Dawei
Wang, Lan
Yan, Chunxia
Zhang, Linhua
Dong, Fubo
Lu, Junwan
Lin, Xi
Li, Kewei
Bao, Qiyu
Cong, Cheng
Pan, Wei
author_facet Dong, Xu
Zhu, Mei
Li, Yaxuan
Huang, Dawei
Wang, Lan
Yan, Chunxia
Zhang, Linhua
Dong, Fubo
Lu, Junwan
Lin, Xi
Li, Kewei
Bao, Qiyu
Cong, Cheng
Pan, Wei
author_sort Dong, Xu
collection PubMed
description Members of the Enterobacter cloacae complex (ECC) are important opportunistic nosocomial pathogens that are associated with a great variety of infections. Due to limited data on the genome-based classification of species and investigation of resistance mechanisms, in this work, we collected 172 clinical ECC isolates between 2019 and 2020 from three hospitals in Zhejiang, China and performed a retrospective whole-genome sequencing to analyze their population structure and drug resistance mechanisms. Of the 172 ECC isolates, 160 belonged to 9 classified species, and 12 belonged to unclassified species based on ANI analysis. Most isolates belonged to E. hormaechei (45.14%) followed by E. kobei (13.71%), which contained 126 STs, including 62 novel STs, as determined by multilocus sequence typing (MLST) analysis. Pan-genome analysis of the two ECC species showed that they have an “open” tendency, which indicated that their Pan-genome increased considerably with the addition of new genomes. A total of 80 resistance genes associated with 11 antimicrobial agent categories were identified in the genomes of all the isolates. The most prevailing resistance genes (12/29, 41.38%) were related to β-lactams followed by aminoglycosides. A total of 247 β-lactamase genes were identified, of which the bla(ACT) genes were the most dominant (145/247, 58.70%), followed by the bla(TEM) genes (21/247, 8.50%). The inherent ACT type β-lactamase genes differed among different species. bla(ACT-2) and bla(ACT-3) were only present in E. asburiae, while bla(ACT-9), bla(ACT-12), and bla(ACT-6) exclusively appeared in E. kobei, E. ludwigii, and E. mori. Among the six carbapenemase-encoding genes (bla(NDM-1), bla(NDM-5), bla(IMP-1), bla(IMP-4), bla(IMP-26), and bla(KPC-2)) identified, two (bla(NDM-1) and bla(IMP-1)) were identified in an ST78 E. hormaechei isolate. Comparative genomic analysis of the carbapenemase gene-related sequences was performed, and the corresponding genetic structure of these resistance genes was analyzed. Genome-wide molecular characterization of the ECC population and resistance mechanism would offer valuable insights into the effective management of ECC infection in clinical settings. IMPORTANCE The presence and emergence of multiple species/subspecies of ECC have led to diversity and complications at the taxonomic level, which impedes our further understanding of the epidemiology and clinical significance of species/subspecies of ECC. Accurate identification of ECC species is extremely important. Also, it is of great importance to study the carbapenem-resistant genes in ECC and to further understand the mechanism of horizontal transfer of the resistance genes by analyzing the surrounding environment around the genes. The occurrence of ECC carrying two MBL genes also indicates that the selection pressure of bacteria is further increased, suggesting that we need to pay special attention to the emergence of such bacteria in the clinic.
format Online
Article
Text
id pubmed-9769718
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-97697182022-12-22 Whole-Genome Sequencing-Based Species Classification, Multilocus Sequence Typing, and Antimicrobial Resistance Mechanism Analysis of the Enterobacter cloacae Complex in Southern China Dong, Xu Zhu, Mei Li, Yaxuan Huang, Dawei Wang, Lan Yan, Chunxia Zhang, Linhua Dong, Fubo Lu, Junwan Lin, Xi Li, Kewei Bao, Qiyu Cong, Cheng Pan, Wei Microbiol Spectr Research Article Members of the Enterobacter cloacae complex (ECC) are important opportunistic nosocomial pathogens that are associated with a great variety of infections. Due to limited data on the genome-based classification of species and investigation of resistance mechanisms, in this work, we collected 172 clinical ECC isolates between 2019 and 2020 from three hospitals in Zhejiang, China and performed a retrospective whole-genome sequencing to analyze their population structure and drug resistance mechanisms. Of the 172 ECC isolates, 160 belonged to 9 classified species, and 12 belonged to unclassified species based on ANI analysis. Most isolates belonged to E. hormaechei (45.14%) followed by E. kobei (13.71%), which contained 126 STs, including 62 novel STs, as determined by multilocus sequence typing (MLST) analysis. Pan-genome analysis of the two ECC species showed that they have an “open” tendency, which indicated that their Pan-genome increased considerably with the addition of new genomes. A total of 80 resistance genes associated with 11 antimicrobial agent categories were identified in the genomes of all the isolates. The most prevailing resistance genes (12/29, 41.38%) were related to β-lactams followed by aminoglycosides. A total of 247 β-lactamase genes were identified, of which the bla(ACT) genes were the most dominant (145/247, 58.70%), followed by the bla(TEM) genes (21/247, 8.50%). The inherent ACT type β-lactamase genes differed among different species. bla(ACT-2) and bla(ACT-3) were only present in E. asburiae, while bla(ACT-9), bla(ACT-12), and bla(ACT-6) exclusively appeared in E. kobei, E. ludwigii, and E. mori. Among the six carbapenemase-encoding genes (bla(NDM-1), bla(NDM-5), bla(IMP-1), bla(IMP-4), bla(IMP-26), and bla(KPC-2)) identified, two (bla(NDM-1) and bla(IMP-1)) were identified in an ST78 E. hormaechei isolate. Comparative genomic analysis of the carbapenemase gene-related sequences was performed, and the corresponding genetic structure of these resistance genes was analyzed. Genome-wide molecular characterization of the ECC population and resistance mechanism would offer valuable insights into the effective management of ECC infection in clinical settings. IMPORTANCE The presence and emergence of multiple species/subspecies of ECC have led to diversity and complications at the taxonomic level, which impedes our further understanding of the epidemiology and clinical significance of species/subspecies of ECC. Accurate identification of ECC species is extremely important. Also, it is of great importance to study the carbapenem-resistant genes in ECC and to further understand the mechanism of horizontal transfer of the resistance genes by analyzing the surrounding environment around the genes. The occurrence of ECC carrying two MBL genes also indicates that the selection pressure of bacteria is further increased, suggesting that we need to pay special attention to the emergence of such bacteria in the clinic. American Society for Microbiology 2022-11-09 /pmc/articles/PMC9769718/ /pubmed/36350178 http://dx.doi.org/10.1128/spectrum.02160-22 Text en Copyright © 2022 Dong et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Dong, Xu
Zhu, Mei
Li, Yaxuan
Huang, Dawei
Wang, Lan
Yan, Chunxia
Zhang, Linhua
Dong, Fubo
Lu, Junwan
Lin, Xi
Li, Kewei
Bao, Qiyu
Cong, Cheng
Pan, Wei
Whole-Genome Sequencing-Based Species Classification, Multilocus Sequence Typing, and Antimicrobial Resistance Mechanism Analysis of the Enterobacter cloacae Complex in Southern China
title Whole-Genome Sequencing-Based Species Classification, Multilocus Sequence Typing, and Antimicrobial Resistance Mechanism Analysis of the Enterobacter cloacae Complex in Southern China
title_full Whole-Genome Sequencing-Based Species Classification, Multilocus Sequence Typing, and Antimicrobial Resistance Mechanism Analysis of the Enterobacter cloacae Complex in Southern China
title_fullStr Whole-Genome Sequencing-Based Species Classification, Multilocus Sequence Typing, and Antimicrobial Resistance Mechanism Analysis of the Enterobacter cloacae Complex in Southern China
title_full_unstemmed Whole-Genome Sequencing-Based Species Classification, Multilocus Sequence Typing, and Antimicrobial Resistance Mechanism Analysis of the Enterobacter cloacae Complex in Southern China
title_short Whole-Genome Sequencing-Based Species Classification, Multilocus Sequence Typing, and Antimicrobial Resistance Mechanism Analysis of the Enterobacter cloacae Complex in Southern China
title_sort whole-genome sequencing-based species classification, multilocus sequence typing, and antimicrobial resistance mechanism analysis of the enterobacter cloacae complex in southern china
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769718/
https://www.ncbi.nlm.nih.gov/pubmed/36350178
http://dx.doi.org/10.1128/spectrum.02160-22
work_keys_str_mv AT dongxu wholegenomesequencingbasedspeciesclassificationmultilocussequencetypingandantimicrobialresistancemechanismanalysisoftheenterobactercloacaecomplexinsouthernchina
AT zhumei wholegenomesequencingbasedspeciesclassificationmultilocussequencetypingandantimicrobialresistancemechanismanalysisoftheenterobactercloacaecomplexinsouthernchina
AT liyaxuan wholegenomesequencingbasedspeciesclassificationmultilocussequencetypingandantimicrobialresistancemechanismanalysisoftheenterobactercloacaecomplexinsouthernchina
AT huangdawei wholegenomesequencingbasedspeciesclassificationmultilocussequencetypingandantimicrobialresistancemechanismanalysisoftheenterobactercloacaecomplexinsouthernchina
AT wanglan wholegenomesequencingbasedspeciesclassificationmultilocussequencetypingandantimicrobialresistancemechanismanalysisoftheenterobactercloacaecomplexinsouthernchina
AT yanchunxia wholegenomesequencingbasedspeciesclassificationmultilocussequencetypingandantimicrobialresistancemechanismanalysisoftheenterobactercloacaecomplexinsouthernchina
AT zhanglinhua wholegenomesequencingbasedspeciesclassificationmultilocussequencetypingandantimicrobialresistancemechanismanalysisoftheenterobactercloacaecomplexinsouthernchina
AT dongfubo wholegenomesequencingbasedspeciesclassificationmultilocussequencetypingandantimicrobialresistancemechanismanalysisoftheenterobactercloacaecomplexinsouthernchina
AT lujunwan wholegenomesequencingbasedspeciesclassificationmultilocussequencetypingandantimicrobialresistancemechanismanalysisoftheenterobactercloacaecomplexinsouthernchina
AT linxi wholegenomesequencingbasedspeciesclassificationmultilocussequencetypingandantimicrobialresistancemechanismanalysisoftheenterobactercloacaecomplexinsouthernchina
AT likewei wholegenomesequencingbasedspeciesclassificationmultilocussequencetypingandantimicrobialresistancemechanismanalysisoftheenterobactercloacaecomplexinsouthernchina
AT baoqiyu wholegenomesequencingbasedspeciesclassificationmultilocussequencetypingandantimicrobialresistancemechanismanalysisoftheenterobactercloacaecomplexinsouthernchina
AT congcheng wholegenomesequencingbasedspeciesclassificationmultilocussequencetypingandantimicrobialresistancemechanismanalysisoftheenterobactercloacaecomplexinsouthernchina
AT panwei wholegenomesequencingbasedspeciesclassificationmultilocussequencetypingandantimicrobialresistancemechanismanalysisoftheenterobactercloacaecomplexinsouthernchina