Cargando…

Rapid On-Site Detection of Extensively Drug-Resistant Genes in Enterobacteriaceae via Enhanced Recombinase Polymerase Amplification and Lateral Flow Biosensor

The widespread emergence of transferable extensively drug-resistant (XDR) genes, including bla(NDM) and bla(KPC) for carbapenem resistance, mcr-1 for colistin resistance, and tet(X4) and tet(X6) for tigecycline resistance, in Enterobacteriaceae poses a major threat to public health. Thus, rapid on-s...

Descripción completa

Detalles Bibliográficos
Autores principales: Tao, Jin, Liu, Dejun, Xiong, Jincheng, Dou, Leina, Zhai, Weishuai, Zhang, Rong, Wang, Yang, Shen, Jianzhong, Wen, Kai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769758/
https://www.ncbi.nlm.nih.gov/pubmed/36445091
http://dx.doi.org/10.1128/spectrum.03344-22
_version_ 1784854441802858496
author Tao, Jin
Liu, Dejun
Xiong, Jincheng
Dou, Leina
Zhai, Weishuai
Zhang, Rong
Wang, Yang
Shen, Jianzhong
Wen, Kai
author_facet Tao, Jin
Liu, Dejun
Xiong, Jincheng
Dou, Leina
Zhai, Weishuai
Zhang, Rong
Wang, Yang
Shen, Jianzhong
Wen, Kai
author_sort Tao, Jin
collection PubMed
description The widespread emergence of transferable extensively drug-resistant (XDR) genes, including bla(NDM) and bla(KPC) for carbapenem resistance, mcr-1 for colistin resistance, and tet(X4) and tet(X6) for tigecycline resistance, in Enterobacteriaceae poses a major threat to public health. Thus, rapid on-site detection of these XDR genes is urgently needed. We developed a cascade system with a unitary polyethylene glycol (PEG) 200-enhanced recombinase polymerase amplification (RPA) as the core, combined with a modified Chelex-100 lysis method and a horseradish peroxidase (HRP)-catalyzed lateral flow immunoassay (LFIA) biosensor, to accurately detect these genes in Enterobacteriaceae. The conventional Chelex-100 lysis method was modified to allow in situ extraction of bacterial DNA in 20 min without requiring bulky high-speed centrifuges. Using PEG 200 increased the amplification efficiency of the RPA by 13%, and the HRP-catalyzed LFIA biosensor intensified the colorimetric signal of the test line. Following optimization, the sensitivity of the cascade system was <10 copies/μL with satisfactory specificity, allowing for highly sensitive detection of these XDR genes in Enterobacteriaceae. The complete detection procedure can be completed in less than 1 h without using large-scale instruments. This assay is conducive to rapid on-site visual detection of these XDR genes in Enterobacteriaceae in practical applications, thus providing better technical support for clinical surveillance of these genes and better treatment of XDR pathogens. IMPORTANCE Carbapenem, colistin, and tigecycline are considered the last resorts for treating severe bacterial infections caused by extensively drug-resistant (XDR) pathogens. A major threat to public health is the emergence and prevalence of transferable XDR genes in Enterobacteriaceae, such as bla(NDM) and bla(KPC) for carbapenem resistance, mcr-1 for colistin resistance, and tet(X4) and tet(X6) for tigecycline resistance. Therefore, it is imperative to develop rapid on-site methods to detect these XDR genes. In this study, we constructed a cascade system for detecting these genes based on PEG 200-enhanced recombinase polymerase amplification combined with a modified Chelex-100 lysis method and HRP-catalyzed lateral flow immunoassay. The current method is capable of detecting the above-mentioned XDR genes in situ with satisfactory specificity and sensitivity, which could provide technical support for the surveillance of these genes and provide medication recommendations for the treatment of relevant clinical infections.
format Online
Article
Text
id pubmed-9769758
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-97697582022-12-22 Rapid On-Site Detection of Extensively Drug-Resistant Genes in Enterobacteriaceae via Enhanced Recombinase Polymerase Amplification and Lateral Flow Biosensor Tao, Jin Liu, Dejun Xiong, Jincheng Dou, Leina Zhai, Weishuai Zhang, Rong Wang, Yang Shen, Jianzhong Wen, Kai Microbiol Spectr Research Article The widespread emergence of transferable extensively drug-resistant (XDR) genes, including bla(NDM) and bla(KPC) for carbapenem resistance, mcr-1 for colistin resistance, and tet(X4) and tet(X6) for tigecycline resistance, in Enterobacteriaceae poses a major threat to public health. Thus, rapid on-site detection of these XDR genes is urgently needed. We developed a cascade system with a unitary polyethylene glycol (PEG) 200-enhanced recombinase polymerase amplification (RPA) as the core, combined with a modified Chelex-100 lysis method and a horseradish peroxidase (HRP)-catalyzed lateral flow immunoassay (LFIA) biosensor, to accurately detect these genes in Enterobacteriaceae. The conventional Chelex-100 lysis method was modified to allow in situ extraction of bacterial DNA in 20 min without requiring bulky high-speed centrifuges. Using PEG 200 increased the amplification efficiency of the RPA by 13%, and the HRP-catalyzed LFIA biosensor intensified the colorimetric signal of the test line. Following optimization, the sensitivity of the cascade system was <10 copies/μL with satisfactory specificity, allowing for highly sensitive detection of these XDR genes in Enterobacteriaceae. The complete detection procedure can be completed in less than 1 h without using large-scale instruments. This assay is conducive to rapid on-site visual detection of these XDR genes in Enterobacteriaceae in practical applications, thus providing better technical support for clinical surveillance of these genes and better treatment of XDR pathogens. IMPORTANCE Carbapenem, colistin, and tigecycline are considered the last resorts for treating severe bacterial infections caused by extensively drug-resistant (XDR) pathogens. A major threat to public health is the emergence and prevalence of transferable XDR genes in Enterobacteriaceae, such as bla(NDM) and bla(KPC) for carbapenem resistance, mcr-1 for colistin resistance, and tet(X4) and tet(X6) for tigecycline resistance. Therefore, it is imperative to develop rapid on-site methods to detect these XDR genes. In this study, we constructed a cascade system for detecting these genes based on PEG 200-enhanced recombinase polymerase amplification combined with a modified Chelex-100 lysis method and HRP-catalyzed lateral flow immunoassay. The current method is capable of detecting the above-mentioned XDR genes in situ with satisfactory specificity and sensitivity, which could provide technical support for the surveillance of these genes and provide medication recommendations for the treatment of relevant clinical infections. American Society for Microbiology 2022-11-29 /pmc/articles/PMC9769758/ /pubmed/36445091 http://dx.doi.org/10.1128/spectrum.03344-22 Text en Copyright © 2022 Tao et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Tao, Jin
Liu, Dejun
Xiong, Jincheng
Dou, Leina
Zhai, Weishuai
Zhang, Rong
Wang, Yang
Shen, Jianzhong
Wen, Kai
Rapid On-Site Detection of Extensively Drug-Resistant Genes in Enterobacteriaceae via Enhanced Recombinase Polymerase Amplification and Lateral Flow Biosensor
title Rapid On-Site Detection of Extensively Drug-Resistant Genes in Enterobacteriaceae via Enhanced Recombinase Polymerase Amplification and Lateral Flow Biosensor
title_full Rapid On-Site Detection of Extensively Drug-Resistant Genes in Enterobacteriaceae via Enhanced Recombinase Polymerase Amplification and Lateral Flow Biosensor
title_fullStr Rapid On-Site Detection of Extensively Drug-Resistant Genes in Enterobacteriaceae via Enhanced Recombinase Polymerase Amplification and Lateral Flow Biosensor
title_full_unstemmed Rapid On-Site Detection of Extensively Drug-Resistant Genes in Enterobacteriaceae via Enhanced Recombinase Polymerase Amplification and Lateral Flow Biosensor
title_short Rapid On-Site Detection of Extensively Drug-Resistant Genes in Enterobacteriaceae via Enhanced Recombinase Polymerase Amplification and Lateral Flow Biosensor
title_sort rapid on-site detection of extensively drug-resistant genes in enterobacteriaceae via enhanced recombinase polymerase amplification and lateral flow biosensor
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769758/
https://www.ncbi.nlm.nih.gov/pubmed/36445091
http://dx.doi.org/10.1128/spectrum.03344-22
work_keys_str_mv AT taojin rapidonsitedetectionofextensivelydrugresistantgenesinenterobacteriaceaeviaenhancedrecombinasepolymeraseamplificationandlateralflowbiosensor
AT liudejun rapidonsitedetectionofextensivelydrugresistantgenesinenterobacteriaceaeviaenhancedrecombinasepolymeraseamplificationandlateralflowbiosensor
AT xiongjincheng rapidonsitedetectionofextensivelydrugresistantgenesinenterobacteriaceaeviaenhancedrecombinasepolymeraseamplificationandlateralflowbiosensor
AT douleina rapidonsitedetectionofextensivelydrugresistantgenesinenterobacteriaceaeviaenhancedrecombinasepolymeraseamplificationandlateralflowbiosensor
AT zhaiweishuai rapidonsitedetectionofextensivelydrugresistantgenesinenterobacteriaceaeviaenhancedrecombinasepolymeraseamplificationandlateralflowbiosensor
AT zhangrong rapidonsitedetectionofextensivelydrugresistantgenesinenterobacteriaceaeviaenhancedrecombinasepolymeraseamplificationandlateralflowbiosensor
AT wangyang rapidonsitedetectionofextensivelydrugresistantgenesinenterobacteriaceaeviaenhancedrecombinasepolymeraseamplificationandlateralflowbiosensor
AT shenjianzhong rapidonsitedetectionofextensivelydrugresistantgenesinenterobacteriaceaeviaenhancedrecombinasepolymeraseamplificationandlateralflowbiosensor
AT wenkai rapidonsitedetectionofextensivelydrugresistantgenesinenterobacteriaceaeviaenhancedrecombinasepolymeraseamplificationandlateralflowbiosensor