Cargando…

Mycobacterium Fluoroquinolone Resistance Protein D (MfpD), a GTPase-Activating Protein of GTPase MfpB, Is Involved in Fluoroquinolones Potency

Tuberculosis (TB) caused by Mycobacterium tuberculosis infection remains one of the most serious global health problems. Fluoroquinolones (FQs) are an important component of drug regimens against multidrug-resistant tuberculosis, but challenged by the emergence of FQ-resistant strains. Mycobacterium...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Yu, Yan, Shuangquan, Li, Yuzhu, Ai, Xuefeng, Yu, Xi, Ge, Yan, Lv, Xi, Fan, Lin, Xie, Jianping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769811/
https://www.ncbi.nlm.nih.gov/pubmed/36453945
http://dx.doi.org/10.1128/spectrum.02098-22
_version_ 1784854453870919680
author Huang, Yu
Yan, Shuangquan
Li, Yuzhu
Ai, Xuefeng
Yu, Xi
Ge, Yan
Lv, Xi
Fan, Lin
Xie, Jianping
author_facet Huang, Yu
Yan, Shuangquan
Li, Yuzhu
Ai, Xuefeng
Yu, Xi
Ge, Yan
Lv, Xi
Fan, Lin
Xie, Jianping
author_sort Huang, Yu
collection PubMed
description Tuberculosis (TB) caused by Mycobacterium tuberculosis infection remains one of the most serious global health problems. Fluoroquinolones (FQs) are an important component of drug regimens against multidrug-resistant tuberculosis, but challenged by the emergence of FQ-resistant strains. Mycobacterium fluoroquinolone resistance protein A (MfpA) is a pentapeptide protein that confers resistance to FQs. MfpA is the fifth gene in the mfp operon among most Mycobacterium, implying other mfp genes might regulate the activity of MfpA. To elucidate the function of this operon, we constructed deletion mutants and rescued strains and found that MfpD is a GTPase-activating protein (GAP) involved in FQs activity. We showed that the recombinant strains overexpressing mfpD became more sensitive to FQs, whereas an mfpD deletion mutant was more resistant to FQs. By using site-directed mutagenesis and mycobacterial protein fragment complementation, we genetically demonstrated that mfpD participated in FQs susceptibility via directly acting on mfpB. We further biochemically demonstrated that MfpD was a GAP capable of stimulating the GTPase activity of MfpB. Our studies suggest that MfpD, a GAP of MfpB, is involved in MfpA-mediated FQs resistance. The function of MfpD adds new insights into the role of the mfp operon in Mycobacterium fluoroquinolone resistance. IMPORTANCE Tuberculosis is one of the leading causes of morbidity and mortality worldwide largely due to increasingly prevalent drug-resistant strains. Fluoroquinolones are important antibiotics used for treating multidrug-resistant tuberculosis (MDR-TB). The resistance mechanism mediated by the Mycobacterium fluoroquinolone resistance protein (MfpA) is unique in Mycobacterium. However, the regulatory mechanism of MfpA remains largely unclear. In this study, we first report that MfpD acts as a GAP for MfpB and characterize a novel pathway that controls Mycobacterium small G proteins. Our findings provide new insights into the regulation of MfpA and inspiration for new candidate targets for the discovery and development of anti-TB drugs.
format Online
Article
Text
id pubmed-9769811
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-97698112022-12-22 Mycobacterium Fluoroquinolone Resistance Protein D (MfpD), a GTPase-Activating Protein of GTPase MfpB, Is Involved in Fluoroquinolones Potency Huang, Yu Yan, Shuangquan Li, Yuzhu Ai, Xuefeng Yu, Xi Ge, Yan Lv, Xi Fan, Lin Xie, Jianping Microbiol Spectr Research Article Tuberculosis (TB) caused by Mycobacterium tuberculosis infection remains one of the most serious global health problems. Fluoroquinolones (FQs) are an important component of drug regimens against multidrug-resistant tuberculosis, but challenged by the emergence of FQ-resistant strains. Mycobacterium fluoroquinolone resistance protein A (MfpA) is a pentapeptide protein that confers resistance to FQs. MfpA is the fifth gene in the mfp operon among most Mycobacterium, implying other mfp genes might regulate the activity of MfpA. To elucidate the function of this operon, we constructed deletion mutants and rescued strains and found that MfpD is a GTPase-activating protein (GAP) involved in FQs activity. We showed that the recombinant strains overexpressing mfpD became more sensitive to FQs, whereas an mfpD deletion mutant was more resistant to FQs. By using site-directed mutagenesis and mycobacterial protein fragment complementation, we genetically demonstrated that mfpD participated in FQs susceptibility via directly acting on mfpB. We further biochemically demonstrated that MfpD was a GAP capable of stimulating the GTPase activity of MfpB. Our studies suggest that MfpD, a GAP of MfpB, is involved in MfpA-mediated FQs resistance. The function of MfpD adds new insights into the role of the mfp operon in Mycobacterium fluoroquinolone resistance. IMPORTANCE Tuberculosis is one of the leading causes of morbidity and mortality worldwide largely due to increasingly prevalent drug-resistant strains. Fluoroquinolones are important antibiotics used for treating multidrug-resistant tuberculosis (MDR-TB). The resistance mechanism mediated by the Mycobacterium fluoroquinolone resistance protein (MfpA) is unique in Mycobacterium. However, the regulatory mechanism of MfpA remains largely unclear. In this study, we first report that MfpD acts as a GAP for MfpB and characterize a novel pathway that controls Mycobacterium small G proteins. Our findings provide new insights into the regulation of MfpA and inspiration for new candidate targets for the discovery and development of anti-TB drugs. American Society for Microbiology 2022-12-01 /pmc/articles/PMC9769811/ /pubmed/36453945 http://dx.doi.org/10.1128/spectrum.02098-22 Text en Copyright © 2022 Huang et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Huang, Yu
Yan, Shuangquan
Li, Yuzhu
Ai, Xuefeng
Yu, Xi
Ge, Yan
Lv, Xi
Fan, Lin
Xie, Jianping
Mycobacterium Fluoroquinolone Resistance Protein D (MfpD), a GTPase-Activating Protein of GTPase MfpB, Is Involved in Fluoroquinolones Potency
title Mycobacterium Fluoroquinolone Resistance Protein D (MfpD), a GTPase-Activating Protein of GTPase MfpB, Is Involved in Fluoroquinolones Potency
title_full Mycobacterium Fluoroquinolone Resistance Protein D (MfpD), a GTPase-Activating Protein of GTPase MfpB, Is Involved in Fluoroquinolones Potency
title_fullStr Mycobacterium Fluoroquinolone Resistance Protein D (MfpD), a GTPase-Activating Protein of GTPase MfpB, Is Involved in Fluoroquinolones Potency
title_full_unstemmed Mycobacterium Fluoroquinolone Resistance Protein D (MfpD), a GTPase-Activating Protein of GTPase MfpB, Is Involved in Fluoroquinolones Potency
title_short Mycobacterium Fluoroquinolone Resistance Protein D (MfpD), a GTPase-Activating Protein of GTPase MfpB, Is Involved in Fluoroquinolones Potency
title_sort mycobacterium fluoroquinolone resistance protein d (mfpd), a gtpase-activating protein of gtpase mfpb, is involved in fluoroquinolones potency
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769811/
https://www.ncbi.nlm.nih.gov/pubmed/36453945
http://dx.doi.org/10.1128/spectrum.02098-22
work_keys_str_mv AT huangyu mycobacteriumfluoroquinoloneresistanceproteindmfpdagtpaseactivatingproteinofgtpasemfpbisinvolvedinfluoroquinolonespotency
AT yanshuangquan mycobacteriumfluoroquinoloneresistanceproteindmfpdagtpaseactivatingproteinofgtpasemfpbisinvolvedinfluoroquinolonespotency
AT liyuzhu mycobacteriumfluoroquinoloneresistanceproteindmfpdagtpaseactivatingproteinofgtpasemfpbisinvolvedinfluoroquinolonespotency
AT aixuefeng mycobacteriumfluoroquinoloneresistanceproteindmfpdagtpaseactivatingproteinofgtpasemfpbisinvolvedinfluoroquinolonespotency
AT yuxi mycobacteriumfluoroquinoloneresistanceproteindmfpdagtpaseactivatingproteinofgtpasemfpbisinvolvedinfluoroquinolonespotency
AT geyan mycobacteriumfluoroquinoloneresistanceproteindmfpdagtpaseactivatingproteinofgtpasemfpbisinvolvedinfluoroquinolonespotency
AT lvxi mycobacteriumfluoroquinoloneresistanceproteindmfpdagtpaseactivatingproteinofgtpasemfpbisinvolvedinfluoroquinolonespotency
AT fanlin mycobacteriumfluoroquinoloneresistanceproteindmfpdagtpaseactivatingproteinofgtpasemfpbisinvolvedinfluoroquinolonespotency
AT xiejianping mycobacteriumfluoroquinoloneresistanceproteindmfpdagtpaseactivatingproteinofgtpasemfpbisinvolvedinfluoroquinolonespotency