Cargando…
Construction of a machine learning-based artificial neural network for discriminating PANoptosis related subgroups to predict prognosis in low-grade gliomas
The poor prognosis of gliomas necessitates the search for biomarkers for predicting clinical outcomes. Recent studies have shown that PANoptosis play an important role in tumor progression. However, the role of PANoptosis in in gliomas has not been fully clarified.Low-grade gliomas (LGGs) from TCGA...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9770564/ https://www.ncbi.nlm.nih.gov/pubmed/36543888 http://dx.doi.org/10.1038/s41598-022-26389-3 |
_version_ | 1784854629605965824 |
---|---|
author | Chen, GuanFei He, ZhongMing Jiang, Wenbo Li, LuLu Luo, Bo Wang, XiaoYu Zheng, XiaoLi |
author_facet | Chen, GuanFei He, ZhongMing Jiang, Wenbo Li, LuLu Luo, Bo Wang, XiaoYu Zheng, XiaoLi |
author_sort | Chen, GuanFei |
collection | PubMed |
description | The poor prognosis of gliomas necessitates the search for biomarkers for predicting clinical outcomes. Recent studies have shown that PANoptosis play an important role in tumor progression. However, the role of PANoptosis in in gliomas has not been fully clarified.Low-grade gliomas (LGGs) from TCGA and CGGA database were classified into two PANoptosis patterns based on the expression of PANoptosis related genes (PRGs) using consensus clustering method, followed which the differentially expressed genes (DEGs) between two PANoptosis patterns were defined as PANoptosis related gene signature. Subsequently, LGGs were separated into two PANoptosis related gene clusters with distinct prognosis based on PANoptosis related gene signature. Univariate and multivariate cox regression analysis confirmed the prognostic values of PANoptosis related gene cluster, based on which a nomogram model was constructed to predict the prognosis in LGGs. ESTIMATE algorithm, MCP counter and CIBERSORT algorithm were utilized to explore the distinct characteristics of tumor microenvironment (TME) between two PANoptosis related gene clusters. Furthermore, an artificial neural network (ANN) model based on machine learning methods was developed to discriminate distinct PANoptosis related gene clusters. Two external datasets were used to verify the performance of the ANN model. The Human Protein Atlas website and western blotting were utilized to confirm the expression of the featured genes involved the ANN model. We developed a machine learning based ANN model for discriminating PANoptosis related subgroups with drawing implications in predicting prognosis in gliomas. |
format | Online Article Text |
id | pubmed-9770564 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-97705642022-12-22 Construction of a machine learning-based artificial neural network for discriminating PANoptosis related subgroups to predict prognosis in low-grade gliomas Chen, GuanFei He, ZhongMing Jiang, Wenbo Li, LuLu Luo, Bo Wang, XiaoYu Zheng, XiaoLi Sci Rep Article The poor prognosis of gliomas necessitates the search for biomarkers for predicting clinical outcomes. Recent studies have shown that PANoptosis play an important role in tumor progression. However, the role of PANoptosis in in gliomas has not been fully clarified.Low-grade gliomas (LGGs) from TCGA and CGGA database were classified into two PANoptosis patterns based on the expression of PANoptosis related genes (PRGs) using consensus clustering method, followed which the differentially expressed genes (DEGs) between two PANoptosis patterns were defined as PANoptosis related gene signature. Subsequently, LGGs were separated into two PANoptosis related gene clusters with distinct prognosis based on PANoptosis related gene signature. Univariate and multivariate cox regression analysis confirmed the prognostic values of PANoptosis related gene cluster, based on which a nomogram model was constructed to predict the prognosis in LGGs. ESTIMATE algorithm, MCP counter and CIBERSORT algorithm were utilized to explore the distinct characteristics of tumor microenvironment (TME) between two PANoptosis related gene clusters. Furthermore, an artificial neural network (ANN) model based on machine learning methods was developed to discriminate distinct PANoptosis related gene clusters. Two external datasets were used to verify the performance of the ANN model. The Human Protein Atlas website and western blotting were utilized to confirm the expression of the featured genes involved the ANN model. We developed a machine learning based ANN model for discriminating PANoptosis related subgroups with drawing implications in predicting prognosis in gliomas. Nature Publishing Group UK 2022-12-21 /pmc/articles/PMC9770564/ /pubmed/36543888 http://dx.doi.org/10.1038/s41598-022-26389-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Chen, GuanFei He, ZhongMing Jiang, Wenbo Li, LuLu Luo, Bo Wang, XiaoYu Zheng, XiaoLi Construction of a machine learning-based artificial neural network for discriminating PANoptosis related subgroups to predict prognosis in low-grade gliomas |
title | Construction of a machine learning-based artificial neural network for discriminating PANoptosis related subgroups to predict prognosis in low-grade gliomas |
title_full | Construction of a machine learning-based artificial neural network for discriminating PANoptosis related subgroups to predict prognosis in low-grade gliomas |
title_fullStr | Construction of a machine learning-based artificial neural network for discriminating PANoptosis related subgroups to predict prognosis in low-grade gliomas |
title_full_unstemmed | Construction of a machine learning-based artificial neural network for discriminating PANoptosis related subgroups to predict prognosis in low-grade gliomas |
title_short | Construction of a machine learning-based artificial neural network for discriminating PANoptosis related subgroups to predict prognosis in low-grade gliomas |
title_sort | construction of a machine learning-based artificial neural network for discriminating panoptosis related subgroups to predict prognosis in low-grade gliomas |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9770564/ https://www.ncbi.nlm.nih.gov/pubmed/36543888 http://dx.doi.org/10.1038/s41598-022-26389-3 |
work_keys_str_mv | AT chenguanfei constructionofamachinelearningbasedartificialneuralnetworkfordiscriminatingpanoptosisrelatedsubgroupstopredictprognosisinlowgradegliomas AT hezhongming constructionofamachinelearningbasedartificialneuralnetworkfordiscriminatingpanoptosisrelatedsubgroupstopredictprognosisinlowgradegliomas AT jiangwenbo constructionofamachinelearningbasedartificialneuralnetworkfordiscriminatingpanoptosisrelatedsubgroupstopredictprognosisinlowgradegliomas AT lilulu constructionofamachinelearningbasedartificialneuralnetworkfordiscriminatingpanoptosisrelatedsubgroupstopredictprognosisinlowgradegliomas AT luobo constructionofamachinelearningbasedartificialneuralnetworkfordiscriminatingpanoptosisrelatedsubgroupstopredictprognosisinlowgradegliomas AT wangxiaoyu constructionofamachinelearningbasedartificialneuralnetworkfordiscriminatingpanoptosisrelatedsubgroupstopredictprognosisinlowgradegliomas AT zhengxiaoli constructionofamachinelearningbasedartificialneuralnetworkfordiscriminatingpanoptosisrelatedsubgroupstopredictprognosisinlowgradegliomas |