Cargando…

Mechanically robust stretchable semiconductor metallization for skin-inspired organic transistors

Despite recent remarkable advances in stretchable organic thin-film field-effect transistors (OTFTs), the development of stretchable metallization remains a challenge. Here, we report a highly stretchable and robust metallization on an elastomeric semiconductor film based on metal-elastic semiconduc...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Min Hyouk, Jeong, Min Woo, Kim, Jun Su, Nam, Tae Uk, Vo, Ngoc Thanh Phuong, Jin, Lihua, Lee, Tae Il, Oh, Jin Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9770969/
https://www.ncbi.nlm.nih.gov/pubmed/36542706
http://dx.doi.org/10.1126/sciadv.ade2988
_version_ 1784854715996045312
author Kim, Min Hyouk
Jeong, Min Woo
Kim, Jun Su
Nam, Tae Uk
Vo, Ngoc Thanh Phuong
Jin, Lihua
Lee, Tae Il
Oh, Jin Young
author_facet Kim, Min Hyouk
Jeong, Min Woo
Kim, Jun Su
Nam, Tae Uk
Vo, Ngoc Thanh Phuong
Jin, Lihua
Lee, Tae Il
Oh, Jin Young
author_sort Kim, Min Hyouk
collection PubMed
description Despite recent remarkable advances in stretchable organic thin-film field-effect transistors (OTFTs), the development of stretchable metallization remains a challenge. Here, we report a highly stretchable and robust metallization on an elastomeric semiconductor film based on metal-elastic semiconductor intermixing. We found that vaporized silver (Ag) atom with higher diffusivity than other noble metals (Au and Cu) forms a continuous intermixing layer during thermal evaporation, enabling highly stretchable metallization. The Ag metallization maintains a high conductivity (>10(4) S/cm) even under 100% strain and successfully preserves its conductivity without delamination even after 10,000 stretching cycles at 100% strain and several adhesive tape tests. Moreover, a native silver oxide layer formed on the intermixed Ag clusters facilitates efficient hole injection into the elastomeric semiconductor, which transcends previously reported stretchable source and drain electrodes for OTFTs.
format Online
Article
Text
id pubmed-9770969
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-97709692022-12-28 Mechanically robust stretchable semiconductor metallization for skin-inspired organic transistors Kim, Min Hyouk Jeong, Min Woo Kim, Jun Su Nam, Tae Uk Vo, Ngoc Thanh Phuong Jin, Lihua Lee, Tae Il Oh, Jin Young Sci Adv Physical and Materials Sciences Despite recent remarkable advances in stretchable organic thin-film field-effect transistors (OTFTs), the development of stretchable metallization remains a challenge. Here, we report a highly stretchable and robust metallization on an elastomeric semiconductor film based on metal-elastic semiconductor intermixing. We found that vaporized silver (Ag) atom with higher diffusivity than other noble metals (Au and Cu) forms a continuous intermixing layer during thermal evaporation, enabling highly stretchable metallization. The Ag metallization maintains a high conductivity (>10(4) S/cm) even under 100% strain and successfully preserves its conductivity without delamination even after 10,000 stretching cycles at 100% strain and several adhesive tape tests. Moreover, a native silver oxide layer formed on the intermixed Ag clusters facilitates efficient hole injection into the elastomeric semiconductor, which transcends previously reported stretchable source and drain electrodes for OTFTs. American Association for the Advancement of Science 2022-12-21 /pmc/articles/PMC9770969/ /pubmed/36542706 http://dx.doi.org/10.1126/sciadv.ade2988 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Kim, Min Hyouk
Jeong, Min Woo
Kim, Jun Su
Nam, Tae Uk
Vo, Ngoc Thanh Phuong
Jin, Lihua
Lee, Tae Il
Oh, Jin Young
Mechanically robust stretchable semiconductor metallization for skin-inspired organic transistors
title Mechanically robust stretchable semiconductor metallization for skin-inspired organic transistors
title_full Mechanically robust stretchable semiconductor metallization for skin-inspired organic transistors
title_fullStr Mechanically robust stretchable semiconductor metallization for skin-inspired organic transistors
title_full_unstemmed Mechanically robust stretchable semiconductor metallization for skin-inspired organic transistors
title_short Mechanically robust stretchable semiconductor metallization for skin-inspired organic transistors
title_sort mechanically robust stretchable semiconductor metallization for skin-inspired organic transistors
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9770969/
https://www.ncbi.nlm.nih.gov/pubmed/36542706
http://dx.doi.org/10.1126/sciadv.ade2988
work_keys_str_mv AT kimminhyouk mechanicallyrobuststretchablesemiconductormetallizationforskininspiredorganictransistors
AT jeongminwoo mechanicallyrobuststretchablesemiconductormetallizationforskininspiredorganictransistors
AT kimjunsu mechanicallyrobuststretchablesemiconductormetallizationforskininspiredorganictransistors
AT namtaeuk mechanicallyrobuststretchablesemiconductormetallizationforskininspiredorganictransistors
AT vongocthanhphuong mechanicallyrobuststretchablesemiconductormetallizationforskininspiredorganictransistors
AT jinlihua mechanicallyrobuststretchablesemiconductormetallizationforskininspiredorganictransistors
AT leetaeil mechanicallyrobuststretchablesemiconductormetallizationforskininspiredorganictransistors
AT ohjinyoung mechanicallyrobuststretchablesemiconductormetallizationforskininspiredorganictransistors