Cargando…
Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis
Myelofibrosis (MF) is a myeloproliferative neoplasm (MPN) with heterogeneous clinical course. Allogeneic hematopoietic cell transplantation remains the only curative therapy, but its morbidity and mortality require careful candidate selection. Therefore, accurate disease risk prognostication is crit...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771324/ https://www.ncbi.nlm.nih.gov/pubmed/36570691 http://dx.doi.org/10.1097/HS9.0000000000000818 |
_version_ | 1784854800886661120 |
---|---|
author | Mosquera-Orgueira, Adrián Pérez-Encinas, Manuel Hernández-Sánchez, Alberto González-Martínez, Teresa Arellano-Rodrigo, Eduardo Martínez-Elicegui, Javier Villaverde-Ramiro, Ángela Raya, José-María Ayala, Rosa Ferrer-Marín, Francisca Fox, María-Laura Velez, Patricia Mora, Elvira Xicoy, Blanca Mata-Vázquez, María-Isabel García-Fortes, María Angona, Anna Cuevas, Beatriz Senín, María-Alicia Ramírez-Payer, Angel Ramírez, María-José Pérez-López, Raúl González de Villambrosía, Sonia Martínez-Valverde, Clara Gómez-Casares, María-Teresa García-Hernández, Carmen Gasior, Mercedes Bellosillo, Beatriz Steegmann, Juan-Luis Álvarez-Larrán, Alberto Hernández-Rivas, Jesús María Hernández-Boluda, Juan Carlos |
author_facet | Mosquera-Orgueira, Adrián Pérez-Encinas, Manuel Hernández-Sánchez, Alberto González-Martínez, Teresa Arellano-Rodrigo, Eduardo Martínez-Elicegui, Javier Villaverde-Ramiro, Ángela Raya, José-María Ayala, Rosa Ferrer-Marín, Francisca Fox, María-Laura Velez, Patricia Mora, Elvira Xicoy, Blanca Mata-Vázquez, María-Isabel García-Fortes, María Angona, Anna Cuevas, Beatriz Senín, María-Alicia Ramírez-Payer, Angel Ramírez, María-José Pérez-López, Raúl González de Villambrosía, Sonia Martínez-Valverde, Clara Gómez-Casares, María-Teresa García-Hernández, Carmen Gasior, Mercedes Bellosillo, Beatriz Steegmann, Juan-Luis Álvarez-Larrán, Alberto Hernández-Rivas, Jesús María Hernández-Boluda, Juan Carlos |
author_sort | Mosquera-Orgueira, Adrián |
collection | PubMed |
description | Myelofibrosis (MF) is a myeloproliferative neoplasm (MPN) with heterogeneous clinical course. Allogeneic hematopoietic cell transplantation remains the only curative therapy, but its morbidity and mortality require careful candidate selection. Therefore, accurate disease risk prognostication is critical for treatment decision-making. We obtained registry data from patients diagnosed with MF in 60 Spanish institutions (N = 1386). These were randomly divided into a training set (80%) and a test set (20%). A machine learning (ML) technique (random forest) was used to model overall survival (OS) and leukemia-free survival (LFS) in the training set, and the results were validated in the test set. We derived the AIPSS-MF (Artificial Intelligence Prognostic Scoring System for Myelofibrosis) model, which was based on 8 clinical variables at diagnosis and achieved high accuracy in predicting OS (training set c-index, 0.750; test set c-index, 0.744) and LFS (training set c-index, 0.697; test set c-index, 0.703). No improvement was obtained with the inclusion of MPN driver mutations in the model. We were unable to adequately assess the potential benefit of including adverse cytogenetics or high-risk mutations due to the lack of these data in many patients. AIPSS-MF was superior to the IPSS regardless of MF subtype and age range and outperformed the MYSEC-PM in patients with secondary MF. In conclusion, we have developed a prediction model based exclusively on clinical variables that provides individualized prognostic estimates in patients with primary and secondary MF. The use of AIPSS-MF in combination with predictive models that incorporate genetic information may improve disease risk stratification. |
format | Online Article Text |
id | pubmed-9771324 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Lippincott Williams & Wilkins |
record_format | MEDLINE/PubMed |
spelling | pubmed-97713242022-12-23 Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis Mosquera-Orgueira, Adrián Pérez-Encinas, Manuel Hernández-Sánchez, Alberto González-Martínez, Teresa Arellano-Rodrigo, Eduardo Martínez-Elicegui, Javier Villaverde-Ramiro, Ángela Raya, José-María Ayala, Rosa Ferrer-Marín, Francisca Fox, María-Laura Velez, Patricia Mora, Elvira Xicoy, Blanca Mata-Vázquez, María-Isabel García-Fortes, María Angona, Anna Cuevas, Beatriz Senín, María-Alicia Ramírez-Payer, Angel Ramírez, María-José Pérez-López, Raúl González de Villambrosía, Sonia Martínez-Valverde, Clara Gómez-Casares, María-Teresa García-Hernández, Carmen Gasior, Mercedes Bellosillo, Beatriz Steegmann, Juan-Luis Álvarez-Larrán, Alberto Hernández-Rivas, Jesús María Hernández-Boluda, Juan Carlos Hemasphere Article Myelofibrosis (MF) is a myeloproliferative neoplasm (MPN) with heterogeneous clinical course. Allogeneic hematopoietic cell transplantation remains the only curative therapy, but its morbidity and mortality require careful candidate selection. Therefore, accurate disease risk prognostication is critical for treatment decision-making. We obtained registry data from patients diagnosed with MF in 60 Spanish institutions (N = 1386). These were randomly divided into a training set (80%) and a test set (20%). A machine learning (ML) technique (random forest) was used to model overall survival (OS) and leukemia-free survival (LFS) in the training set, and the results were validated in the test set. We derived the AIPSS-MF (Artificial Intelligence Prognostic Scoring System for Myelofibrosis) model, which was based on 8 clinical variables at diagnosis and achieved high accuracy in predicting OS (training set c-index, 0.750; test set c-index, 0.744) and LFS (training set c-index, 0.697; test set c-index, 0.703). No improvement was obtained with the inclusion of MPN driver mutations in the model. We were unable to adequately assess the potential benefit of including adverse cytogenetics or high-risk mutations due to the lack of these data in many patients. AIPSS-MF was superior to the IPSS regardless of MF subtype and age range and outperformed the MYSEC-PM in patients with secondary MF. In conclusion, we have developed a prediction model based exclusively on clinical variables that provides individualized prognostic estimates in patients with primary and secondary MF. The use of AIPSS-MF in combination with predictive models that incorporate genetic information may improve disease risk stratification. Lippincott Williams & Wilkins 2022-12-20 /pmc/articles/PMC9771324/ /pubmed/36570691 http://dx.doi.org/10.1097/HS9.0000000000000818 Text en Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the European Hematology Association. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY) (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Article Mosquera-Orgueira, Adrián Pérez-Encinas, Manuel Hernández-Sánchez, Alberto González-Martínez, Teresa Arellano-Rodrigo, Eduardo Martínez-Elicegui, Javier Villaverde-Ramiro, Ángela Raya, José-María Ayala, Rosa Ferrer-Marín, Francisca Fox, María-Laura Velez, Patricia Mora, Elvira Xicoy, Blanca Mata-Vázquez, María-Isabel García-Fortes, María Angona, Anna Cuevas, Beatriz Senín, María-Alicia Ramírez-Payer, Angel Ramírez, María-José Pérez-López, Raúl González de Villambrosía, Sonia Martínez-Valverde, Clara Gómez-Casares, María-Teresa García-Hernández, Carmen Gasior, Mercedes Bellosillo, Beatriz Steegmann, Juan-Luis Álvarez-Larrán, Alberto Hernández-Rivas, Jesús María Hernández-Boluda, Juan Carlos Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis |
title | Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis |
title_full | Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis |
title_fullStr | Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis |
title_full_unstemmed | Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis |
title_short | Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis |
title_sort | machine learning improves risk stratification in myelofibrosis: an analysis of the spanish registry of myelofibrosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771324/ https://www.ncbi.nlm.nih.gov/pubmed/36570691 http://dx.doi.org/10.1097/HS9.0000000000000818 |
work_keys_str_mv | AT mosqueraorgueiraadrian machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT perezencinasmanuel machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT hernandezsanchezalberto machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT gonzalezmartinezteresa machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT arellanorodrigoeduardo machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT martinezeliceguijavier machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT villaverderamiroangela machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT rayajosemaria machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT ayalarosa machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT ferrermarinfrancisca machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT foxmarialaura machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT velezpatricia machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT moraelvira machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT xicoyblanca machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT matavazquezmariaisabel machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT garciafortesmaria machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT angonaanna machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT cuevasbeatriz machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT seninmariaalicia machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT ramirezpayerangel machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT ramirezmariajose machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT perezlopezraul machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT gonzalezdevillambrosiasonia machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT martinezvalverdeclara machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT gomezcasaresmariateresa machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT garciahernandezcarmen machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT gasiormercedes machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT bellosillobeatriz machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT steegmannjuanluis machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT alvarezlarranalberto machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT hernandezrivasjesusmaria machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis AT hernandezboludajuancarlos machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis |