Cargando…

Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis

Myelofibrosis (MF) is a myeloproliferative neoplasm (MPN) with heterogeneous clinical course. Allogeneic hematopoietic cell transplantation remains the only curative therapy, but its morbidity and mortality require careful candidate selection. Therefore, accurate disease risk prognostication is crit...

Descripción completa

Detalles Bibliográficos
Autores principales: Mosquera-Orgueira, Adrián, Pérez-Encinas, Manuel, Hernández-Sánchez, Alberto, González-Martínez, Teresa, Arellano-Rodrigo, Eduardo, Martínez-Elicegui, Javier, Villaverde-Ramiro, Ángela, Raya, José-María, Ayala, Rosa, Ferrer-Marín, Francisca, Fox, María-Laura, Velez, Patricia, Mora, Elvira, Xicoy, Blanca, Mata-Vázquez, María-Isabel, García-Fortes, María, Angona, Anna, Cuevas, Beatriz, Senín, María-Alicia, Ramírez-Payer, Angel, Ramírez, María-José, Pérez-López, Raúl, González de Villambrosía, Sonia, Martínez-Valverde, Clara, Gómez-Casares, María-Teresa, García-Hernández, Carmen, Gasior, Mercedes, Bellosillo, Beatriz, Steegmann, Juan-Luis, Álvarez-Larrán, Alberto, Hernández-Rivas, Jesús María, Hernández-Boluda, Juan Carlos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771324/
https://www.ncbi.nlm.nih.gov/pubmed/36570691
http://dx.doi.org/10.1097/HS9.0000000000000818
_version_ 1784854800886661120
author Mosquera-Orgueira, Adrián
Pérez-Encinas, Manuel
Hernández-Sánchez, Alberto
González-Martínez, Teresa
Arellano-Rodrigo, Eduardo
Martínez-Elicegui, Javier
Villaverde-Ramiro, Ángela
Raya, José-María
Ayala, Rosa
Ferrer-Marín, Francisca
Fox, María-Laura
Velez, Patricia
Mora, Elvira
Xicoy, Blanca
Mata-Vázquez, María-Isabel
García-Fortes, María
Angona, Anna
Cuevas, Beatriz
Senín, María-Alicia
Ramírez-Payer, Angel
Ramírez, María-José
Pérez-López, Raúl
González de Villambrosía, Sonia
Martínez-Valverde, Clara
Gómez-Casares, María-Teresa
García-Hernández, Carmen
Gasior, Mercedes
Bellosillo, Beatriz
Steegmann, Juan-Luis
Álvarez-Larrán, Alberto
Hernández-Rivas, Jesús María
Hernández-Boluda, Juan Carlos
author_facet Mosquera-Orgueira, Adrián
Pérez-Encinas, Manuel
Hernández-Sánchez, Alberto
González-Martínez, Teresa
Arellano-Rodrigo, Eduardo
Martínez-Elicegui, Javier
Villaverde-Ramiro, Ángela
Raya, José-María
Ayala, Rosa
Ferrer-Marín, Francisca
Fox, María-Laura
Velez, Patricia
Mora, Elvira
Xicoy, Blanca
Mata-Vázquez, María-Isabel
García-Fortes, María
Angona, Anna
Cuevas, Beatriz
Senín, María-Alicia
Ramírez-Payer, Angel
Ramírez, María-José
Pérez-López, Raúl
González de Villambrosía, Sonia
Martínez-Valverde, Clara
Gómez-Casares, María-Teresa
García-Hernández, Carmen
Gasior, Mercedes
Bellosillo, Beatriz
Steegmann, Juan-Luis
Álvarez-Larrán, Alberto
Hernández-Rivas, Jesús María
Hernández-Boluda, Juan Carlos
author_sort Mosquera-Orgueira, Adrián
collection PubMed
description Myelofibrosis (MF) is a myeloproliferative neoplasm (MPN) with heterogeneous clinical course. Allogeneic hematopoietic cell transplantation remains the only curative therapy, but its morbidity and mortality require careful candidate selection. Therefore, accurate disease risk prognostication is critical for treatment decision-making. We obtained registry data from patients diagnosed with MF in 60 Spanish institutions (N = 1386). These were randomly divided into a training set (80%) and a test set (20%). A machine learning (ML) technique (random forest) was used to model overall survival (OS) and leukemia-free survival (LFS) in the training set, and the results were validated in the test set. We derived the AIPSS-MF (Artificial Intelligence Prognostic Scoring System for Myelofibrosis) model, which was based on 8 clinical variables at diagnosis and achieved high accuracy in predicting OS (training set c-index, 0.750; test set c-index, 0.744) and LFS (training set c-index, 0.697; test set c-index, 0.703). No improvement was obtained with the inclusion of MPN driver mutations in the model. We were unable to adequately assess the potential benefit of including adverse cytogenetics or high-risk mutations due to the lack of these data in many patients. AIPSS-MF was superior to the IPSS regardless of MF subtype and age range and outperformed the MYSEC-PM in patients with secondary MF. In conclusion, we have developed a prediction model based exclusively on clinical variables that provides individualized prognostic estimates in patients with primary and secondary MF. The use of AIPSS-MF in combination with predictive models that incorporate genetic information may improve disease risk stratification.
format Online
Article
Text
id pubmed-9771324
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Lippincott Williams & Wilkins
record_format MEDLINE/PubMed
spelling pubmed-97713242022-12-23 Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis Mosquera-Orgueira, Adrián Pérez-Encinas, Manuel Hernández-Sánchez, Alberto González-Martínez, Teresa Arellano-Rodrigo, Eduardo Martínez-Elicegui, Javier Villaverde-Ramiro, Ángela Raya, José-María Ayala, Rosa Ferrer-Marín, Francisca Fox, María-Laura Velez, Patricia Mora, Elvira Xicoy, Blanca Mata-Vázquez, María-Isabel García-Fortes, María Angona, Anna Cuevas, Beatriz Senín, María-Alicia Ramírez-Payer, Angel Ramírez, María-José Pérez-López, Raúl González de Villambrosía, Sonia Martínez-Valverde, Clara Gómez-Casares, María-Teresa García-Hernández, Carmen Gasior, Mercedes Bellosillo, Beatriz Steegmann, Juan-Luis Álvarez-Larrán, Alberto Hernández-Rivas, Jesús María Hernández-Boluda, Juan Carlos Hemasphere Article Myelofibrosis (MF) is a myeloproliferative neoplasm (MPN) with heterogeneous clinical course. Allogeneic hematopoietic cell transplantation remains the only curative therapy, but its morbidity and mortality require careful candidate selection. Therefore, accurate disease risk prognostication is critical for treatment decision-making. We obtained registry data from patients diagnosed with MF in 60 Spanish institutions (N = 1386). These were randomly divided into a training set (80%) and a test set (20%). A machine learning (ML) technique (random forest) was used to model overall survival (OS) and leukemia-free survival (LFS) in the training set, and the results were validated in the test set. We derived the AIPSS-MF (Artificial Intelligence Prognostic Scoring System for Myelofibrosis) model, which was based on 8 clinical variables at diagnosis and achieved high accuracy in predicting OS (training set c-index, 0.750; test set c-index, 0.744) and LFS (training set c-index, 0.697; test set c-index, 0.703). No improvement was obtained with the inclusion of MPN driver mutations in the model. We were unable to adequately assess the potential benefit of including adverse cytogenetics or high-risk mutations due to the lack of these data in many patients. AIPSS-MF was superior to the IPSS regardless of MF subtype and age range and outperformed the MYSEC-PM in patients with secondary MF. In conclusion, we have developed a prediction model based exclusively on clinical variables that provides individualized prognostic estimates in patients with primary and secondary MF. The use of AIPSS-MF in combination with predictive models that incorporate genetic information may improve disease risk stratification. Lippincott Williams & Wilkins 2022-12-20 /pmc/articles/PMC9771324/ /pubmed/36570691 http://dx.doi.org/10.1097/HS9.0000000000000818 Text en Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the European Hematology Association. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY) (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Article
Mosquera-Orgueira, Adrián
Pérez-Encinas, Manuel
Hernández-Sánchez, Alberto
González-Martínez, Teresa
Arellano-Rodrigo, Eduardo
Martínez-Elicegui, Javier
Villaverde-Ramiro, Ángela
Raya, José-María
Ayala, Rosa
Ferrer-Marín, Francisca
Fox, María-Laura
Velez, Patricia
Mora, Elvira
Xicoy, Blanca
Mata-Vázquez, María-Isabel
García-Fortes, María
Angona, Anna
Cuevas, Beatriz
Senín, María-Alicia
Ramírez-Payer, Angel
Ramírez, María-José
Pérez-López, Raúl
González de Villambrosía, Sonia
Martínez-Valverde, Clara
Gómez-Casares, María-Teresa
García-Hernández, Carmen
Gasior, Mercedes
Bellosillo, Beatriz
Steegmann, Juan-Luis
Álvarez-Larrán, Alberto
Hernández-Rivas, Jesús María
Hernández-Boluda, Juan Carlos
Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis
title Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis
title_full Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis
title_fullStr Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis
title_full_unstemmed Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis
title_short Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis
title_sort machine learning improves risk stratification in myelofibrosis: an analysis of the spanish registry of myelofibrosis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771324/
https://www.ncbi.nlm.nih.gov/pubmed/36570691
http://dx.doi.org/10.1097/HS9.0000000000000818
work_keys_str_mv AT mosqueraorgueiraadrian machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT perezencinasmanuel machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT hernandezsanchezalberto machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT gonzalezmartinezteresa machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT arellanorodrigoeduardo machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT martinezeliceguijavier machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT villaverderamiroangela machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT rayajosemaria machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT ayalarosa machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT ferrermarinfrancisca machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT foxmarialaura machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT velezpatricia machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT moraelvira machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT xicoyblanca machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT matavazquezmariaisabel machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT garciafortesmaria machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT angonaanna machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT cuevasbeatriz machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT seninmariaalicia machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT ramirezpayerangel machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT ramirezmariajose machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT perezlopezraul machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT gonzalezdevillambrosiasonia machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT martinezvalverdeclara machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT gomezcasaresmariateresa machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT garciahernandezcarmen machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT gasiormercedes machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT bellosillobeatriz machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT steegmannjuanluis machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT alvarezlarranalberto machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT hernandezrivasjesusmaria machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis
AT hernandezboludajuancarlos machinelearningimprovesriskstratificationinmyelofibrosisananalysisofthespanishregistryofmyelofibrosis