Cargando…
Interpretable machine learning for predicting pathologic complete response in patients treated with chemoradiation therapy for rectal adenocarcinoma
PURPOSE: Pathologic complete response (pCR) is a critical factor in determining whether patients with rectal cancer (RC) should have surgery after neoadjuvant chemoradiotherapy (nCRT). Currently, a pathologist's histological analysis of surgical specimens is necessary for a reliable assessment...
Autores principales: | Wang, Du, Lee, Sang Ho, Geng, Huaizhi, Zhong, Haoyu, Plastaras, John, Wojcieszynski, Andrzej, Caruana, Richard, Xiao, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771385/ https://www.ncbi.nlm.nih.gov/pubmed/36568580 http://dx.doi.org/10.3389/frai.2022.1059033 |
Ejemplares similares
-
Interpretability With Accurate Small Models
por: Ghose, Abhishek, et al.
Publicado: (2020) -
Toward the appropriate interpretation of Alphafold2
por: Xu, Tian, et al.
Publicado: (2023) -
Interpretable neural networks: principles and applications
por: Liu, Zhuoyang, et al.
Publicado: (2023) -
Image Completion in Embedded Space Using Multistage Tensor Ring Decomposition
por: Sedighin, Farnaz, et al.
Publicado: (2021) -
Interpretability Versus Accuracy: A Comparison of Machine Learning Models Built Using Different Algorithms, Performance Measures, and Features to Predict E. coli Levels in Agricultural Water
por: Weller, Daniel L., et al.
Publicado: (2021)