Cargando…
“Stealing fire or stacking knowledge” by machine intelligence to model link prediction in complex networks
Current methodologies to model connectivity in complex networks either rely on network scientists’ intelligence to discover reliable physical rules or use artificial intelligence (AI) that stacks hundreds of inaccurate human-made rules to make a new one that optimally summarizes them together. Here,...
Autores principales: | Muscoloni, Alessandro, Cannistraci, Carlo Vittorio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771718/ https://www.ncbi.nlm.nih.gov/pubmed/36570772 http://dx.doi.org/10.1016/j.isci.2022.105697 |
Ejemplares similares
-
Geometrical congruence, greedy navigability and myopic transfer in complex networks and brain connectomes
por: Cannistraci, Carlo Vittorio, et al.
Publicado: (2022) -
Machine learning meets complex networks via coalescent embedding in the hyperbolic space
por: Muscoloni, Alessandro, et al.
Publicado: (2017) -
Modular gateway-ness connectivity and structural core organization in maritime network science
por: Xu, Mengqiao, et al.
Publicado: (2020) -
From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks
por: Cannistraci, Carlo Vittorio, et al.
Publicado: (2013) -
Modelling Self-Organization in Complex Networks Via a Brain-Inspired Network Automata Theory Improves Link Reliability in Protein Interactomes
por: Cannistraci, Carlo Vittorio
Publicado: (2018)