Cargando…
Feasibility of using AI to auto-catch responsible frames in ultrasound screening for breast cancer diagnosis
The research of AI-assisted breast diagnosis has primarily been based on static images. It is unclear whether it represents the best diagnosis image.To explore the method of capturing complementary responsible frames from breast ultrasound screening by using artificial intelligence. We used feature...
Autores principales: | Chen, Jing, Jiang, Yitao, Yang, Keen, Ye, Xiuqin, Cui, Chen, Shi, Siyuan, Wu, Huaiyu, Tian, Hongtian, Song, Di, Yao, Jincao, Wang, Liping, Huang, Sijing, Xu, Jinfeng, Xu, Dong, Dong, Fajin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771726/ https://www.ncbi.nlm.nih.gov/pubmed/36570770 http://dx.doi.org/10.1016/j.isci.2022.105692 |
Ejemplares similares
-
A Comparative Study of Multiple Deep Learning Models Based on Multi-Input Resolution for Breast Ultrasound Images
por: Wu, Huaiyu, et al.
Publicado: (2022) -
The effect of image resolution on convolutional neural networks in breast ultrasound
por: Tang, Shuzhen, et al.
Publicado: (2023) -
S-Thyroid Computer-Aided Diagnosis Ultrasound System of Thyroid Nodules: Correlation Between Transverse and Longitudinal Planes
por: Yang, Keen, et al.
Publicado: (2022) -
Artificial intelligence for non-mass breast lesions detection and classification on ultrasound images: a comparative study
por: Li, Guoqiu, et al.
Publicado: (2023) -
Development and validation of a nomogram for discriminating between benign and malignant breast masses by conventional ultrasound and dual-mode elastography: a multicenter study
por: Yang, Keen, et al.
Publicado: (2023)