Cargando…
Privacy-preserving integration of multiple institutional data for single-cell type identification with scPrivacy
The rapid accumulation of large-scale single-cell RNA-seq datasets from multiple institutions presents remarkable opportunities for automatically cell annotations through integrative analyses. However, the privacy issue has existed but being ignored, since we are limited to access and utilize all th...
Autores principales: | Chen, Shaoqi, Duan, Bin, Zhu, Chenyu, Tang, Chen, Wang, Shuguang, Gao, Yicheng, Fu, Shaliu, Fan, Lixin, Yang, Qiang, Liu, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Science China Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771767/ https://www.ncbi.nlm.nih.gov/pubmed/36543995 http://dx.doi.org/10.1007/s11427-022-2224-4 |
Ejemplares similares
-
Integrating multiple references for single-cell assignment
por: Duan, Bin, et al.
Publicado: (2021) -
A Privacy Attack on Multiple Dynamic Match-key based Privacy-Preserving Record Linkage
por: Vidanage, A, et al.
Publicado: (2020) -
Privacy-Preserving Data Publishing: An Overview
por: Wong, Raymond Chi-Wing, et al.
Publicado: (2010) -
Privacy preserving data visualizations
por: Avraam, Demetris, et al.
Publicado: (2021) -
Privacy-Preserving Blockchain Technologies
por: Valadares, Dalton Cézane Gomes, et al.
Publicado: (2023)