Cargando…
Human visual processing during walking: Dissociable pre- and post-stimulus influences
Walking influences visual processing but the underlying mechanism remains poorly understood. In this study, we investigated the influence of walking on pre-stimulus and stimulus-induced visual neural activity and behavioural performance in a discrimination task while participants were standing or fr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771827/ https://www.ncbi.nlm.nih.gov/pubmed/36414209 http://dx.doi.org/10.1016/j.neuroimage.2022.119757 |
Sumario: | Walking influences visual processing but the underlying mechanism remains poorly understood. In this study, we investigated the influence of walking on pre-stimulus and stimulus-induced visual neural activity and behavioural performance in a discrimination task while participants were standing or freely walking. The results showed dissociable pre- and post-stimulus influences by the movement state. Walking was associated with a reduced pre-stimulus alpha power, which predicted enhanced N1 and decreased P3 components during walking. This pre-stimulus alpha activity was additionally modulated by time on the task, which was paralleled by a similar behavioural modulation. In contrast, the post-stimulus alpha power was reduced in its modulation due to stimulus onset during walking but showed no evidence of modulation by time on the task. Additionally, stimulus parameters (eccentricity, laterality, distractor presence significantly influenced post-stimulus alpha power, whereas the visually evoked components showed no evidence of such an influence. There was further no evidence of a correlation between pre-stimulus and post stimulus alpha power. We conclude that walking has two dissociable influences on visual processing: while the walking induced reduction in alpha power suggests an attentional state change that relates to visual awareness, the post-stimulus influence on alpha power modulation indicates changed spatial visual processing during walking. |
---|