Cargando…
A large and rich EEG dataset for modeling human visual object recognition
The human brain achieves visual object recognition through multiple stages of linear and nonlinear transformations operating at a millisecond scale. To predict and explain these rapid transformations, computational neuroscientists employ machine learning modeling techniques. However, state-of-the-ar...
Autores principales: | Gifford, Alessandro T., Dwivedi, Kshitij, Roig, Gemma, Cichy, Radoslaw M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771828/ https://www.ncbi.nlm.nih.gov/pubmed/36400378 http://dx.doi.org/10.1016/j.neuroimage.2022.119754 |
Ejemplares similares
-
The spatiotemporal neural dynamics of object location representations in the human brain
por: Graumann, Monika, et al.
Publicado: (2022) -
Unveiling functions of the visual cortex using task-specific deep neural networks
por: Dwivedi, Kshitij, et al.
Publicado: (2021) -
Resolving human object recognition in space and time
por: Cichy, Radoslaw Martin, et al.
Publicado: (2014) -
Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition
por: Cichy, Radoslaw Martin, et al.
Publicado: (2016) -
Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence
por: Cichy, Radoslaw Martin, et al.
Publicado: (2016)