Cargando…

Imaging Mass Cytometry Reveals Predominant Innate Immune Signature and Endothelial–Immune Cell Interaction in Juvenile Myositis Compared to Lupus Skin

OBJECTIVE: Cutaneous inflammation can signal disease in juvenile dermatomyositis (DM) and childhood‐onset systemic lupus erythematosus (cSLE), but we do not fully understand cellular mechanisms of cutaneous inflammation. In this study, we used imaging mass cytometry to characterize cutaneous inflamm...

Descripción completa

Detalles Bibliográficos
Autores principales: Turnier, Jessica L., Yee, Christine M., Madison, Jacqueline A., Rizvi, Syed M., Berthier, Celine C., Wen, Fei, Kahlenberg, J. Michelle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wiley Periodicals, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771877/
https://www.ncbi.nlm.nih.gov/pubmed/35762881
http://dx.doi.org/10.1002/art.42283
_version_ 1784854908416032768
author Turnier, Jessica L.
Yee, Christine M.
Madison, Jacqueline A.
Rizvi, Syed M.
Berthier, Celine C.
Wen, Fei
Kahlenberg, J. Michelle
author_facet Turnier, Jessica L.
Yee, Christine M.
Madison, Jacqueline A.
Rizvi, Syed M.
Berthier, Celine C.
Wen, Fei
Kahlenberg, J. Michelle
author_sort Turnier, Jessica L.
collection PubMed
description OBJECTIVE: Cutaneous inflammation can signal disease in juvenile dermatomyositis (DM) and childhood‐onset systemic lupus erythematosus (cSLE), but we do not fully understand cellular mechanisms of cutaneous inflammation. In this study, we used imaging mass cytometry to characterize cutaneous inflammatory cell populations and cell–cell interactions in juvenile DM as compared to cSLE. METHODS: We performed imaging mass cytometry analysis on skin biopsy samples from juvenile DM patients (n = 6) and cSLE patients (n = 4). Tissue slides were processed and incubated with metal‐tagged antibodies for CD14, CD15, CD16, CD56, CD68, CD11c, HLA–DR, blood dendritic cell antigen 2, CD20, CD27, CD138, CD4, CD8, E‐cadherin, CD31, pan‐keratin, and type I collagen. Stained tissue was ablated, and raw data were acquired using the Hyperion imaging system. We utilized the Phenograph unsupervised clustering algorithm to determine cell marker expression and permutation test by histoCAT to perform neighborhood analysis. RESULTS: We identified 14 cell populations in juvenile DM and cSLE skin, including CD14+ and CD68+ macrophages, myeloid and plasmacytoid dendritic cells (pDCs), CD4+ and CD8+ T cells, and B cells. Overall, cSLE skin had a higher inflammatory cell infiltrate, with increased CD14+ macrophages, pDCs, and CD8+ T cells and immune cell–immune cell interactions. Juvenile DM skin displayed a stronger innate immune signature, with a higher overall percentage of CD14+ macrophages and prominent endothelial cell–immune cell interaction. CONCLUSION: Our findings identify immune cell population differences, including CD14+ macrophages, pDCs, and CD8+ T cells, in juvenile DM skin compared to cSLE skin, and highlight a predominant innate immune signature and endothelial cell–immune cell interaction in juvenile DM, providing insight into candidate cell populations and interactions to better understand disease‐specific pathophysiology.
format Online
Article
Text
id pubmed-9771877
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Wiley Periodicals, Inc.
record_format MEDLINE/PubMed
spelling pubmed-97718772023-04-13 Imaging Mass Cytometry Reveals Predominant Innate Immune Signature and Endothelial–Immune Cell Interaction in Juvenile Myositis Compared to Lupus Skin Turnier, Jessica L. Yee, Christine M. Madison, Jacqueline A. Rizvi, Syed M. Berthier, Celine C. Wen, Fei Kahlenberg, J. Michelle Arthritis Rheumatol Pediatric Rheumatology OBJECTIVE: Cutaneous inflammation can signal disease in juvenile dermatomyositis (DM) and childhood‐onset systemic lupus erythematosus (cSLE), but we do not fully understand cellular mechanisms of cutaneous inflammation. In this study, we used imaging mass cytometry to characterize cutaneous inflammatory cell populations and cell–cell interactions in juvenile DM as compared to cSLE. METHODS: We performed imaging mass cytometry analysis on skin biopsy samples from juvenile DM patients (n = 6) and cSLE patients (n = 4). Tissue slides were processed and incubated with metal‐tagged antibodies for CD14, CD15, CD16, CD56, CD68, CD11c, HLA–DR, blood dendritic cell antigen 2, CD20, CD27, CD138, CD4, CD8, E‐cadherin, CD31, pan‐keratin, and type I collagen. Stained tissue was ablated, and raw data were acquired using the Hyperion imaging system. We utilized the Phenograph unsupervised clustering algorithm to determine cell marker expression and permutation test by histoCAT to perform neighborhood analysis. RESULTS: We identified 14 cell populations in juvenile DM and cSLE skin, including CD14+ and CD68+ macrophages, myeloid and plasmacytoid dendritic cells (pDCs), CD4+ and CD8+ T cells, and B cells. Overall, cSLE skin had a higher inflammatory cell infiltrate, with increased CD14+ macrophages, pDCs, and CD8+ T cells and immune cell–immune cell interactions. Juvenile DM skin displayed a stronger innate immune signature, with a higher overall percentage of CD14+ macrophages and prominent endothelial cell–immune cell interaction. CONCLUSION: Our findings identify immune cell population differences, including CD14+ macrophages, pDCs, and CD8+ T cells, in juvenile DM skin compared to cSLE skin, and highlight a predominant innate immune signature and endothelial cell–immune cell interaction in juvenile DM, providing insight into candidate cell populations and interactions to better understand disease‐specific pathophysiology. Wiley Periodicals, Inc. 2022-10-18 2022-12 /pmc/articles/PMC9771877/ /pubmed/35762881 http://dx.doi.org/10.1002/art.42283 Text en © 2022 The Authors. Arthritis & Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Pediatric Rheumatology
Turnier, Jessica L.
Yee, Christine M.
Madison, Jacqueline A.
Rizvi, Syed M.
Berthier, Celine C.
Wen, Fei
Kahlenberg, J. Michelle
Imaging Mass Cytometry Reveals Predominant Innate Immune Signature and Endothelial–Immune Cell Interaction in Juvenile Myositis Compared to Lupus Skin
title Imaging Mass Cytometry Reveals Predominant Innate Immune Signature and Endothelial–Immune Cell Interaction in Juvenile Myositis Compared to Lupus Skin
title_full Imaging Mass Cytometry Reveals Predominant Innate Immune Signature and Endothelial–Immune Cell Interaction in Juvenile Myositis Compared to Lupus Skin
title_fullStr Imaging Mass Cytometry Reveals Predominant Innate Immune Signature and Endothelial–Immune Cell Interaction in Juvenile Myositis Compared to Lupus Skin
title_full_unstemmed Imaging Mass Cytometry Reveals Predominant Innate Immune Signature and Endothelial–Immune Cell Interaction in Juvenile Myositis Compared to Lupus Skin
title_short Imaging Mass Cytometry Reveals Predominant Innate Immune Signature and Endothelial–Immune Cell Interaction in Juvenile Myositis Compared to Lupus Skin
title_sort imaging mass cytometry reveals predominant innate immune signature and endothelial–immune cell interaction in juvenile myositis compared to lupus skin
topic Pediatric Rheumatology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771877/
https://www.ncbi.nlm.nih.gov/pubmed/35762881
http://dx.doi.org/10.1002/art.42283
work_keys_str_mv AT turnierjessical imagingmasscytometryrevealspredominantinnateimmunesignatureandendothelialimmunecellinteractioninjuvenilemyositiscomparedtolupusskin
AT yeechristinem imagingmasscytometryrevealspredominantinnateimmunesignatureandendothelialimmunecellinteractioninjuvenilemyositiscomparedtolupusskin
AT madisonjacquelinea imagingmasscytometryrevealspredominantinnateimmunesignatureandendothelialimmunecellinteractioninjuvenilemyositiscomparedtolupusskin
AT rizvisyedm imagingmasscytometryrevealspredominantinnateimmunesignatureandendothelialimmunecellinteractioninjuvenilemyositiscomparedtolupusskin
AT berthiercelinec imagingmasscytometryrevealspredominantinnateimmunesignatureandendothelialimmunecellinteractioninjuvenilemyositiscomparedtolupusskin
AT wenfei imagingmasscytometryrevealspredominantinnateimmunesignatureandendothelialimmunecellinteractioninjuvenilemyositiscomparedtolupusskin
AT kahlenbergjmichelle imagingmasscytometryrevealspredominantinnateimmunesignatureandendothelialimmunecellinteractioninjuvenilemyositiscomparedtolupusskin