Cargando…
de novo variant calling identifies cancer mutation signatures in the 1000 Genomes Project
Detection of de novo variants (DNVs) is critical for studies of disease‐related variation and mutation rates. To accelerate DNV calling, we developed a graphics processing units‐based workflow. We applied our workflow to whole‐genome sequencing data from three parent‐child sequenced cohorts includin...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771978/ https://www.ncbi.nlm.nih.gov/pubmed/36054329 http://dx.doi.org/10.1002/humu.24455 |
_version_ | 1784854911374065664 |
---|---|
author | Ng, Jeffrey K. Vats, Pankaj Fritz‐Waters, Elyn Sarkar, Stephanie Sams, Eleanor I. Padhi, Evin M. Payne, Zachary L. Leonard, Shawn West, Marc A. Prince, Chandler Trani, Lee Jansen, Marshall Vacek, George Samadi, Mehrzad Harkins, Timothy T. Pohl, Craig Turner, Tychele N. |
author_facet | Ng, Jeffrey K. Vats, Pankaj Fritz‐Waters, Elyn Sarkar, Stephanie Sams, Eleanor I. Padhi, Evin M. Payne, Zachary L. Leonard, Shawn West, Marc A. Prince, Chandler Trani, Lee Jansen, Marshall Vacek, George Samadi, Mehrzad Harkins, Timothy T. Pohl, Craig Turner, Tychele N. |
author_sort | Ng, Jeffrey K. |
collection | PubMed |
description | Detection of de novo variants (DNVs) is critical for studies of disease‐related variation and mutation rates. To accelerate DNV calling, we developed a graphics processing units‐based workflow. We applied our workflow to whole‐genome sequencing data from three parent‐child sequenced cohorts including the Simons Simplex Collection (SSC), Simons Foundation Powering Autism Research (SPARK), and the 1000 Genomes Project (1000G) that were sequenced using DNA from blood, saliva, and lymphoblastoid cell lines (LCLs), respectively. The SSC and SPARK DNV callsets were within expectations for number of DNVs, percent at CpG sites, phasing to the paternal chromosome of origin, and average allele balance. However, the 1000G DNV callset was not within expectations and contained excessive DNVs that are likely cell line artifacts. Mutation signature analysis revealed 30% of 1000G DNV signatures matched B‐cell lymphoma. Furthermore, we found variants in DNA repair genes and at Clinvar pathogenic or likely‐pathogenic sites and significant excess of protein‐coding DNVs in IGLL5; a gene known to be involved in B‐cell lymphomas. Our study provides a new rapid DNV caller for the field and elucidates important implications of using sequencing data from LCLs for reference building and disease‐related projects. |
format | Online Article Text |
id | pubmed-9771978 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-97719782023-04-12 de novo variant calling identifies cancer mutation signatures in the 1000 Genomes Project Ng, Jeffrey K. Vats, Pankaj Fritz‐Waters, Elyn Sarkar, Stephanie Sams, Eleanor I. Padhi, Evin M. Payne, Zachary L. Leonard, Shawn West, Marc A. Prince, Chandler Trani, Lee Jansen, Marshall Vacek, George Samadi, Mehrzad Harkins, Timothy T. Pohl, Craig Turner, Tychele N. Hum Mutat Research Articles Detection of de novo variants (DNVs) is critical for studies of disease‐related variation and mutation rates. To accelerate DNV calling, we developed a graphics processing units‐based workflow. We applied our workflow to whole‐genome sequencing data from three parent‐child sequenced cohorts including the Simons Simplex Collection (SSC), Simons Foundation Powering Autism Research (SPARK), and the 1000 Genomes Project (1000G) that were sequenced using DNA from blood, saliva, and lymphoblastoid cell lines (LCLs), respectively. The SSC and SPARK DNV callsets were within expectations for number of DNVs, percent at CpG sites, phasing to the paternal chromosome of origin, and average allele balance. However, the 1000G DNV callset was not within expectations and contained excessive DNVs that are likely cell line artifacts. Mutation signature analysis revealed 30% of 1000G DNV signatures matched B‐cell lymphoma. Furthermore, we found variants in DNA repair genes and at Clinvar pathogenic or likely‐pathogenic sites and significant excess of protein‐coding DNVs in IGLL5; a gene known to be involved in B‐cell lymphomas. Our study provides a new rapid DNV caller for the field and elucidates important implications of using sequencing data from LCLs for reference building and disease‐related projects. John Wiley and Sons Inc. 2022-09-10 2022-12 /pmc/articles/PMC9771978/ /pubmed/36054329 http://dx.doi.org/10.1002/humu.24455 Text en © 2022 The Authors. Human Mutation published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Ng, Jeffrey K. Vats, Pankaj Fritz‐Waters, Elyn Sarkar, Stephanie Sams, Eleanor I. Padhi, Evin M. Payne, Zachary L. Leonard, Shawn West, Marc A. Prince, Chandler Trani, Lee Jansen, Marshall Vacek, George Samadi, Mehrzad Harkins, Timothy T. Pohl, Craig Turner, Tychele N. de novo variant calling identifies cancer mutation signatures in the 1000 Genomes Project |
title | de novo variant calling identifies cancer mutation signatures in the 1000 Genomes Project |
title_full | de novo variant calling identifies cancer mutation signatures in the 1000 Genomes Project |
title_fullStr | de novo variant calling identifies cancer mutation signatures in the 1000 Genomes Project |
title_full_unstemmed | de novo variant calling identifies cancer mutation signatures in the 1000 Genomes Project |
title_short | de novo variant calling identifies cancer mutation signatures in the 1000 Genomes Project |
title_sort | de novo variant calling identifies cancer mutation signatures in the 1000 genomes project |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771978/ https://www.ncbi.nlm.nih.gov/pubmed/36054329 http://dx.doi.org/10.1002/humu.24455 |
work_keys_str_mv | AT ngjeffreyk denovovariantcallingidentifiescancermutationsignaturesinthe1000genomesproject AT vatspankaj denovovariantcallingidentifiescancermutationsignaturesinthe1000genomesproject AT fritzwaterselyn denovovariantcallingidentifiescancermutationsignaturesinthe1000genomesproject AT sarkarstephanie denovovariantcallingidentifiescancermutationsignaturesinthe1000genomesproject AT samseleanori denovovariantcallingidentifiescancermutationsignaturesinthe1000genomesproject AT padhievinm denovovariantcallingidentifiescancermutationsignaturesinthe1000genomesproject AT paynezacharyl denovovariantcallingidentifiescancermutationsignaturesinthe1000genomesproject AT leonardshawn denovovariantcallingidentifiescancermutationsignaturesinthe1000genomesproject AT westmarca denovovariantcallingidentifiescancermutationsignaturesinthe1000genomesproject AT princechandler denovovariantcallingidentifiescancermutationsignaturesinthe1000genomesproject AT tranilee denovovariantcallingidentifiescancermutationsignaturesinthe1000genomesproject AT jansenmarshall denovovariantcallingidentifiescancermutationsignaturesinthe1000genomesproject AT vacekgeorge denovovariantcallingidentifiescancermutationsignaturesinthe1000genomesproject AT samadimehrzad denovovariantcallingidentifiescancermutationsignaturesinthe1000genomesproject AT harkinstimothyt denovovariantcallingidentifiescancermutationsignaturesinthe1000genomesproject AT pohlcraig denovovariantcallingidentifiescancermutationsignaturesinthe1000genomesproject AT turnertychelen denovovariantcallingidentifiescancermutationsignaturesinthe1000genomesproject |