Cargando…
Machine learning assisted interferometric structured illumination microscopy for dynamic biological imaging
Structured Illumination Microscopy, SIM, is one of the most powerful optical imaging methods available to visualize biological environments at subcellular resolution. Its limitations stem from a difficulty of imaging in multiple color channels at once, which reduces imaging speed. Furthermore, there...
Autores principales: | Ward, Edward N., Hecker, Lisa, Christensen, Charles N., Lamb, Jacob R., Lu, Meng, Mascheroni, Luca, Chung, Chyi Wei, Wang, Anna, Rowlands, Christopher J., Schierle, Gabriele S. Kaminski, Kaminski, Clemens F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9772218/ https://www.ncbi.nlm.nih.gov/pubmed/36543776 http://dx.doi.org/10.1038/s41467-022-35307-0 |
Ejemplares similares
-
ML-SIM: universal reconstruction of structured illumination microscopy images using transfer learning
por: Christensen, Charles N., et al.
Publicado: (2021) -
Open-source software package for on-the-fly deskewing and live viewing of volumetric lightsheet microscopy data
por: Lamb, Jacob R., et al.
Publicado: (2023) -
Combining sample expansion and light-sheet microscopy for the volumetric imaging of virus-infected cells with superresolution
por: Mascheroni, Luca, et al.
Publicado: (2022) -
Concepts for structured illumination microscopy with extended axial resolution through mirrored illumination
por: Manton, James D., et al.
Publicado: (2020) -
Combining sample expansion and light sheet microscopy for the volumetric imaging of virus-infected cells with super-resolution
por: Mascheroni, Luca, et al.
Publicado: (2020)