Cargando…

Cooling potential for hot climates by utilizing thermal management of compressed air energy storage systems

This work presents findings on utilizing the expansion stage of compressed air energy storage systems for air conditioning purposes. The proposed setup is an ancillary installation to an existing compressed air energy storage setup and is used to produce chilled water at temperatures as low as 5 °C....

Descripción completa

Detalles Bibliográficos
Autores principales: Alami, Abdul Hai, Orhan, Mehmet, Al Rashid, Rashid, Yasin, Ahmad, Radwan, Ali, Ayoub, Mohamad, Abdelkareem, Mohammad Ali, Alashkar, Adnan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9772223/
https://www.ncbi.nlm.nih.gov/pubmed/36543875
http://dx.doi.org/10.1038/s41598-022-26666-1
Descripción
Sumario:This work presents findings on utilizing the expansion stage of compressed air energy storage systems for air conditioning purposes. The proposed setup is an ancillary installation to an existing compressed air energy storage setup and is used to produce chilled water at temperatures as low as 5 °C. An experimental setup for the ancillary system has been built with appropriate telemetric devices to measure the temporal temperature variation, which consequently can be used to calculate the heat transfer and available cooling capacity. The system is compared to commercially available compression cooling air conditioners, and the potential of replacing them is promising, as one ton of conventional cooling can be replaced with a 500-L (0.5 m(3)) air tank at 20 bar operating for an hour. More tanks can be added to extend the operational viability of the system, which is also serving the original purpose of storing energy from grid excess or from solar photovoltaic panels. The thermal management has had the added benefit of increasing the roundtrip efficiency of the storage system from 31.4 to 35.2%, along with handling a portion of the cooling load.