Cargando…

Machine learning to construct sphingolipid metabolism genes signature to characterize the immune landscape and prognosis of patients with uveal melanoma

BACKGROUND: Uveal melanoma (UVM) is the most common primary intraocular malignancy in adults and is highly metastatic, resulting in a poor patient prognosis. Sphingolipid metabolism plays an important role in tumor development, diagnosis, and prognosis. This study aimed to establish a reliable signa...

Descripción completa

Detalles Bibliográficos
Autores principales: Chi, Hao, Peng, Gaoge, Yang, Jinyan, Zhang, Jinhao, Song, Guobin, Xie, Xixi, Strohmer, Dorothee Franziska, Lai, Guichuan, Zhao, Songyun, Wang, Rui, Yang, Fang, Tian, Gang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9772281/
https://www.ncbi.nlm.nih.gov/pubmed/36568076
http://dx.doi.org/10.3389/fendo.2022.1056310
_version_ 1784854946928132096
author Chi, Hao
Peng, Gaoge
Yang, Jinyan
Zhang, Jinhao
Song, Guobin
Xie, Xixi
Strohmer, Dorothee Franziska
Lai, Guichuan
Zhao, Songyun
Wang, Rui
Yang, Fang
Tian, Gang
author_facet Chi, Hao
Peng, Gaoge
Yang, Jinyan
Zhang, Jinhao
Song, Guobin
Xie, Xixi
Strohmer, Dorothee Franziska
Lai, Guichuan
Zhao, Songyun
Wang, Rui
Yang, Fang
Tian, Gang
author_sort Chi, Hao
collection PubMed
description BACKGROUND: Uveal melanoma (UVM) is the most common primary intraocular malignancy in adults and is highly metastatic, resulting in a poor patient prognosis. Sphingolipid metabolism plays an important role in tumor development, diagnosis, and prognosis. This study aimed to establish a reliable signature based on sphingolipid metabolism genes (SMGs), thus providing a new perspective for assessing immunotherapy response and prognosis in patients with UVM. METHODS: In this study, SMGs were used to classify UVM from the TCGA-UVM and GEO cohorts. Genes significantly associated with prognosis in UVM patients were screened using univariate cox regression analysis. The most significantly characterized genes were obtained by machine learning, and 4-SMGs prognosis signature was constructed by stepwise multifactorial cox. External validation was performed in the GSE84976 cohort. The level of immune infiltration of 4-SMGs in high- and low-risk patients was analyzed by platforms such as CIBERSORT. The prediction of 4-SMGs on immunotherapy and immune checkpoint blockade (ICB) response in UVM patients was assessed by ImmuCellAI and TIP portals. RESULTS: 4-SMGs were considered to be strongly associated with the prognosis of UVM and were good predictors of UVM prognosis. Multivariate analysis found that the model was an independent predictor of UVM, with patients in the low-risk group having higher overall survival than those in the high-risk group. The nomogram constructed from clinical characteristics and risk scores had good prognostic power. The high-risk group showed better results when receiving immunotherapy. CONCLUSIONS: 4-SMGs signature and nomogram showed excellent predictive performance and provided a new perspective for assessing pre-immune efficacy, which will facilitate future precision immuno-oncology studies.
format Online
Article
Text
id pubmed-9772281
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-97722812022-12-23 Machine learning to construct sphingolipid metabolism genes signature to characterize the immune landscape and prognosis of patients with uveal melanoma Chi, Hao Peng, Gaoge Yang, Jinyan Zhang, Jinhao Song, Guobin Xie, Xixi Strohmer, Dorothee Franziska Lai, Guichuan Zhao, Songyun Wang, Rui Yang, Fang Tian, Gang Front Endocrinol (Lausanne) Endocrinology BACKGROUND: Uveal melanoma (UVM) is the most common primary intraocular malignancy in adults and is highly metastatic, resulting in a poor patient prognosis. Sphingolipid metabolism plays an important role in tumor development, diagnosis, and prognosis. This study aimed to establish a reliable signature based on sphingolipid metabolism genes (SMGs), thus providing a new perspective for assessing immunotherapy response and prognosis in patients with UVM. METHODS: In this study, SMGs were used to classify UVM from the TCGA-UVM and GEO cohorts. Genes significantly associated with prognosis in UVM patients were screened using univariate cox regression analysis. The most significantly characterized genes were obtained by machine learning, and 4-SMGs prognosis signature was constructed by stepwise multifactorial cox. External validation was performed in the GSE84976 cohort. The level of immune infiltration of 4-SMGs in high- and low-risk patients was analyzed by platforms such as CIBERSORT. The prediction of 4-SMGs on immunotherapy and immune checkpoint blockade (ICB) response in UVM patients was assessed by ImmuCellAI and TIP portals. RESULTS: 4-SMGs were considered to be strongly associated with the prognosis of UVM and were good predictors of UVM prognosis. Multivariate analysis found that the model was an independent predictor of UVM, with patients in the low-risk group having higher overall survival than those in the high-risk group. The nomogram constructed from clinical characteristics and risk scores had good prognostic power. The high-risk group showed better results when receiving immunotherapy. CONCLUSIONS: 4-SMGs signature and nomogram showed excellent predictive performance and provided a new perspective for assessing pre-immune efficacy, which will facilitate future precision immuno-oncology studies. Frontiers Media S.A. 2022-12-08 /pmc/articles/PMC9772281/ /pubmed/36568076 http://dx.doi.org/10.3389/fendo.2022.1056310 Text en Copyright © 2022 Chi, Peng, Yang, Zhang, Song, Xie, Strohmer, Lai, Zhao, Wang, Yang and Tian https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Endocrinology
Chi, Hao
Peng, Gaoge
Yang, Jinyan
Zhang, Jinhao
Song, Guobin
Xie, Xixi
Strohmer, Dorothee Franziska
Lai, Guichuan
Zhao, Songyun
Wang, Rui
Yang, Fang
Tian, Gang
Machine learning to construct sphingolipid metabolism genes signature to characterize the immune landscape and prognosis of patients with uveal melanoma
title Machine learning to construct sphingolipid metabolism genes signature to characterize the immune landscape and prognosis of patients with uveal melanoma
title_full Machine learning to construct sphingolipid metabolism genes signature to characterize the immune landscape and prognosis of patients with uveal melanoma
title_fullStr Machine learning to construct sphingolipid metabolism genes signature to characterize the immune landscape and prognosis of patients with uveal melanoma
title_full_unstemmed Machine learning to construct sphingolipid metabolism genes signature to characterize the immune landscape and prognosis of patients with uveal melanoma
title_short Machine learning to construct sphingolipid metabolism genes signature to characterize the immune landscape and prognosis of patients with uveal melanoma
title_sort machine learning to construct sphingolipid metabolism genes signature to characterize the immune landscape and prognosis of patients with uveal melanoma
topic Endocrinology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9772281/
https://www.ncbi.nlm.nih.gov/pubmed/36568076
http://dx.doi.org/10.3389/fendo.2022.1056310
work_keys_str_mv AT chihao machinelearningtoconstructsphingolipidmetabolismgenessignaturetocharacterizetheimmunelandscapeandprognosisofpatientswithuvealmelanoma
AT penggaoge machinelearningtoconstructsphingolipidmetabolismgenessignaturetocharacterizetheimmunelandscapeandprognosisofpatientswithuvealmelanoma
AT yangjinyan machinelearningtoconstructsphingolipidmetabolismgenessignaturetocharacterizetheimmunelandscapeandprognosisofpatientswithuvealmelanoma
AT zhangjinhao machinelearningtoconstructsphingolipidmetabolismgenessignaturetocharacterizetheimmunelandscapeandprognosisofpatientswithuvealmelanoma
AT songguobin machinelearningtoconstructsphingolipidmetabolismgenessignaturetocharacterizetheimmunelandscapeandprognosisofpatientswithuvealmelanoma
AT xiexixi machinelearningtoconstructsphingolipidmetabolismgenessignaturetocharacterizetheimmunelandscapeandprognosisofpatientswithuvealmelanoma
AT strohmerdorotheefranziska machinelearningtoconstructsphingolipidmetabolismgenessignaturetocharacterizetheimmunelandscapeandprognosisofpatientswithuvealmelanoma
AT laiguichuan machinelearningtoconstructsphingolipidmetabolismgenessignaturetocharacterizetheimmunelandscapeandprognosisofpatientswithuvealmelanoma
AT zhaosongyun machinelearningtoconstructsphingolipidmetabolismgenessignaturetocharacterizetheimmunelandscapeandprognosisofpatientswithuvealmelanoma
AT wangrui machinelearningtoconstructsphingolipidmetabolismgenessignaturetocharacterizetheimmunelandscapeandprognosisofpatientswithuvealmelanoma
AT yangfang machinelearningtoconstructsphingolipidmetabolismgenessignaturetocharacterizetheimmunelandscapeandprognosisofpatientswithuvealmelanoma
AT tiangang machinelearningtoconstructsphingolipidmetabolismgenessignaturetocharacterizetheimmunelandscapeandprognosisofpatientswithuvealmelanoma