Cargando…
Synergies of fuel cell system thermal management and cryogenic hydrogen exergy utilization
Low-temperature polymer electrolyte fuel cell systems (FCSs) need to reject large amounts of low temperature heat. Often a mobile FCS’s cooling capacity limits the FCS power output. Cryogenic hydrogen is typically utilized as a direct heat sink using heat exchangers (HXs), even though HXs destroy mo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9772419/ https://www.ncbi.nlm.nih.gov/pubmed/36543835 http://dx.doi.org/10.1038/s41598-022-26561-9 |
_version_ | 1784854971119828992 |
---|---|
author | Lenger, Magnus Heinke, Steffen Tegethoff, Wilhelm Köhler, Jürgen |
author_facet | Lenger, Magnus Heinke, Steffen Tegethoff, Wilhelm Köhler, Jürgen |
author_sort | Lenger, Magnus |
collection | PubMed |
description | Low-temperature polymer electrolyte fuel cell systems (FCSs) need to reject large amounts of low temperature heat. Often a mobile FCS’s cooling capacity limits the FCS power output. Cryogenic hydrogen is typically utilized as a direct heat sink using heat exchangers (HXs), even though HXs destroy most hydrogen exergy. This paper investigates synergies between FCS thermal management and cryogenic hydrogen exergy utilization in terms of their benchmark performance: the FCS coolant circuit supplies heat at coolant temperature level to a so named reversible cryogenic exergy utilization system (rCEUS) comprised of thermodynamically ideal heat engine processes. The rCEUS converts this heat partly to electrical energy (the value of which equals the hydrogen exergy) and rejects remaining heat to hydrogen to heat it to coolant temperature. The rCEUS output power is used to support the FCS, so the FCS rejects less heat and a significant fraction of this heat is utilized by the rCEUS. As a result, significantly less heat has to be transferred to ambient and the fuel demand decreases. In this paper, three hydrogen storage options are compared: liquid hydrogen, subcooled liquid hydrogen and cryo-compressed hydrogen. Different para- and orthohydrogen compositions are evaluated. For typical FCS operating points, rejected FCS heat to ambient is reducible by 40–67%. FCS power demand is reducible by 14–31%. FCS rejected heat to ambient reduction is 4.5–8 times larger than that of conventional HXs. Calculations are based on hydrogen’s lower heating value. |
format | Online Article Text |
id | pubmed-9772419 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-97724192022-12-23 Synergies of fuel cell system thermal management and cryogenic hydrogen exergy utilization Lenger, Magnus Heinke, Steffen Tegethoff, Wilhelm Köhler, Jürgen Sci Rep Article Low-temperature polymer electrolyte fuel cell systems (FCSs) need to reject large amounts of low temperature heat. Often a mobile FCS’s cooling capacity limits the FCS power output. Cryogenic hydrogen is typically utilized as a direct heat sink using heat exchangers (HXs), even though HXs destroy most hydrogen exergy. This paper investigates synergies between FCS thermal management and cryogenic hydrogen exergy utilization in terms of their benchmark performance: the FCS coolant circuit supplies heat at coolant temperature level to a so named reversible cryogenic exergy utilization system (rCEUS) comprised of thermodynamically ideal heat engine processes. The rCEUS converts this heat partly to electrical energy (the value of which equals the hydrogen exergy) and rejects remaining heat to hydrogen to heat it to coolant temperature. The rCEUS output power is used to support the FCS, so the FCS rejects less heat and a significant fraction of this heat is utilized by the rCEUS. As a result, significantly less heat has to be transferred to ambient and the fuel demand decreases. In this paper, three hydrogen storage options are compared: liquid hydrogen, subcooled liquid hydrogen and cryo-compressed hydrogen. Different para- and orthohydrogen compositions are evaluated. For typical FCS operating points, rejected FCS heat to ambient is reducible by 40–67%. FCS power demand is reducible by 14–31%. FCS rejected heat to ambient reduction is 4.5–8 times larger than that of conventional HXs. Calculations are based on hydrogen’s lower heating value. Nature Publishing Group UK 2022-12-21 /pmc/articles/PMC9772419/ /pubmed/36543835 http://dx.doi.org/10.1038/s41598-022-26561-9 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Lenger, Magnus Heinke, Steffen Tegethoff, Wilhelm Köhler, Jürgen Synergies of fuel cell system thermal management and cryogenic hydrogen exergy utilization |
title | Synergies of fuel cell system thermal management and cryogenic hydrogen exergy utilization |
title_full | Synergies of fuel cell system thermal management and cryogenic hydrogen exergy utilization |
title_fullStr | Synergies of fuel cell system thermal management and cryogenic hydrogen exergy utilization |
title_full_unstemmed | Synergies of fuel cell system thermal management and cryogenic hydrogen exergy utilization |
title_short | Synergies of fuel cell system thermal management and cryogenic hydrogen exergy utilization |
title_sort | synergies of fuel cell system thermal management and cryogenic hydrogen exergy utilization |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9772419/ https://www.ncbi.nlm.nih.gov/pubmed/36543835 http://dx.doi.org/10.1038/s41598-022-26561-9 |
work_keys_str_mv | AT lengermagnus synergiesoffuelcellsystemthermalmanagementandcryogenichydrogenexergyutilization AT heinkesteffen synergiesoffuelcellsystemthermalmanagementandcryogenichydrogenexergyutilization AT tegethoffwilhelm synergiesoffuelcellsystemthermalmanagementandcryogenichydrogenexergyutilization AT kohlerjurgen synergiesoffuelcellsystemthermalmanagementandcryogenichydrogenexergyutilization |