Cargando…

Improved protein glycosylation enabled heterologous biosynthesis of monoterpenoid indole alkaloids and their unnatural derivatives in yeast

With over 3000 reported structures, monoterpenoid indole alkaloids (MIAs) constitute one of the largest alkaloid groups in nature, including the clinically important anticancer drug vinblastine and its semi-synthetic derivatives from Catharanthus roseus (Madagascar’s periwinkle). With the elucidatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Shahsavarani, Mohammadamin, Utomo, Joseph Christian, Kumar, Rahul, Paz-Galeano, Melina, Garza-García, Jorge Jonathan Oswaldo, Mai, Zhan, Ro, Dae-Kyun, Qu, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9772838/
https://www.ncbi.nlm.nih.gov/pubmed/36569379
http://dx.doi.org/10.1016/j.mec.2022.e00215
_version_ 1784855067563655168
author Shahsavarani, Mohammadamin
Utomo, Joseph Christian
Kumar, Rahul
Paz-Galeano, Melina
Garza-García, Jorge Jonathan Oswaldo
Mai, Zhan
Ro, Dae-Kyun
Qu, Yang
author_facet Shahsavarani, Mohammadamin
Utomo, Joseph Christian
Kumar, Rahul
Paz-Galeano, Melina
Garza-García, Jorge Jonathan Oswaldo
Mai, Zhan
Ro, Dae-Kyun
Qu, Yang
author_sort Shahsavarani, Mohammadamin
collection PubMed
description With over 3000 reported structures, monoterpenoid indole alkaloids (MIAs) constitute one of the largest alkaloid groups in nature, including the clinically important anticancer drug vinblastine and its semi-synthetic derivatives from Catharanthus roseus (Madagascar’s periwinkle). With the elucidation of the complete 28-step biosynthesis for anhydrovinblastine, it is possible to investigate the heterologous production of vinblastine and other medicinal MIAs. In this study, we successfully expressed the flavoenzyme O-acetylstemmadenine oxidase in Saccharomyces cerevisiae (baker’s yeast) by signal peptide modification, which is a vinblastine biosynthetic gene that has not been functionally expressed in this system. We also reported the simultaneous integration of ∼18 kb MIA biosynthetic gene cassettes as single copies into four genomic loci of baker’s yeast by CRISPR-Cas9, which enabled the biosynthesis of vinblastine precursors catharanthine and tabersonine from the feedstocks secologanin and tryptamine. We further demonstrated the biosynthesis of fluorinated and hydroxylated catharanthine and tabersonine derivatives using our yeasts, which showed that the MIA biosynthesis accommodates unnatural substrates, and the system can be further explored to produce other complex MIAs.
format Online
Article
Text
id pubmed-9772838
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-97728382022-12-23 Improved protein glycosylation enabled heterologous biosynthesis of monoterpenoid indole alkaloids and their unnatural derivatives in yeast Shahsavarani, Mohammadamin Utomo, Joseph Christian Kumar, Rahul Paz-Galeano, Melina Garza-García, Jorge Jonathan Oswaldo Mai, Zhan Ro, Dae-Kyun Qu, Yang Metab Eng Commun Short communication With over 3000 reported structures, monoterpenoid indole alkaloids (MIAs) constitute one of the largest alkaloid groups in nature, including the clinically important anticancer drug vinblastine and its semi-synthetic derivatives from Catharanthus roseus (Madagascar’s periwinkle). With the elucidation of the complete 28-step biosynthesis for anhydrovinblastine, it is possible to investigate the heterologous production of vinblastine and other medicinal MIAs. In this study, we successfully expressed the flavoenzyme O-acetylstemmadenine oxidase in Saccharomyces cerevisiae (baker’s yeast) by signal peptide modification, which is a vinblastine biosynthetic gene that has not been functionally expressed in this system. We also reported the simultaneous integration of ∼18 kb MIA biosynthetic gene cassettes as single copies into four genomic loci of baker’s yeast by CRISPR-Cas9, which enabled the biosynthesis of vinblastine precursors catharanthine and tabersonine from the feedstocks secologanin and tryptamine. We further demonstrated the biosynthesis of fluorinated and hydroxylated catharanthine and tabersonine derivatives using our yeasts, which showed that the MIA biosynthesis accommodates unnatural substrates, and the system can be further explored to produce other complex MIAs. Elsevier 2022-12-05 /pmc/articles/PMC9772838/ /pubmed/36569379 http://dx.doi.org/10.1016/j.mec.2022.e00215 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Short communication
Shahsavarani, Mohammadamin
Utomo, Joseph Christian
Kumar, Rahul
Paz-Galeano, Melina
Garza-García, Jorge Jonathan Oswaldo
Mai, Zhan
Ro, Dae-Kyun
Qu, Yang
Improved protein glycosylation enabled heterologous biosynthesis of monoterpenoid indole alkaloids and their unnatural derivatives in yeast
title Improved protein glycosylation enabled heterologous biosynthesis of monoterpenoid indole alkaloids and their unnatural derivatives in yeast
title_full Improved protein glycosylation enabled heterologous biosynthesis of monoterpenoid indole alkaloids and their unnatural derivatives in yeast
title_fullStr Improved protein glycosylation enabled heterologous biosynthesis of monoterpenoid indole alkaloids and their unnatural derivatives in yeast
title_full_unstemmed Improved protein glycosylation enabled heterologous biosynthesis of monoterpenoid indole alkaloids and their unnatural derivatives in yeast
title_short Improved protein glycosylation enabled heterologous biosynthesis of monoterpenoid indole alkaloids and their unnatural derivatives in yeast
title_sort improved protein glycosylation enabled heterologous biosynthesis of monoterpenoid indole alkaloids and their unnatural derivatives in yeast
topic Short communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9772838/
https://www.ncbi.nlm.nih.gov/pubmed/36569379
http://dx.doi.org/10.1016/j.mec.2022.e00215
work_keys_str_mv AT shahsavaranimohammadamin improvedproteinglycosylationenabledheterologousbiosynthesisofmonoterpenoidindolealkaloidsandtheirunnaturalderivativesinyeast
AT utomojosephchristian improvedproteinglycosylationenabledheterologousbiosynthesisofmonoterpenoidindolealkaloidsandtheirunnaturalderivativesinyeast
AT kumarrahul improvedproteinglycosylationenabledheterologousbiosynthesisofmonoterpenoidindolealkaloidsandtheirunnaturalderivativesinyeast
AT pazgaleanomelina improvedproteinglycosylationenabledheterologousbiosynthesisofmonoterpenoidindolealkaloidsandtheirunnaturalderivativesinyeast
AT garzagarciajorgejonathanoswaldo improvedproteinglycosylationenabledheterologousbiosynthesisofmonoterpenoidindolealkaloidsandtheirunnaturalderivativesinyeast
AT maizhan improvedproteinglycosylationenabledheterologousbiosynthesisofmonoterpenoidindolealkaloidsandtheirunnaturalderivativesinyeast
AT rodaekyun improvedproteinglycosylationenabledheterologousbiosynthesisofmonoterpenoidindolealkaloidsandtheirunnaturalderivativesinyeast
AT quyang improvedproteinglycosylationenabledheterologousbiosynthesisofmonoterpenoidindolealkaloidsandtheirunnaturalderivativesinyeast