Cargando…
Quantifying causal effects from observed data using quasi-intervention
BACKGROUND: Causal inference is a crucial element within medical decision-making. There have been many methods for investigating potential causal relationships between disease and treatment options developed in recent years, which can be categorized into two main types: observational studies and exp...
Autores principales: | Yang, Jinghua, Wan, Yaping, Ni, Qianxi, Zuo, Jianhong, Wang, Jin, Zhang, Xiapeng, Zhou, Lifang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9773512/ https://www.ncbi.nlm.nih.gov/pubmed/36544217 http://dx.doi.org/10.1186/s12911-022-02086-z |
Ejemplares similares
-
Causal inference and observational data
por: Olier, Ivan, et al.
Publicado: (2023) -
Inferring and quantifying causality in neuronal networks
por: Chicharro, Daniel, et al.
Publicado: (2011) -
Joint estimation of causal effects from observational and intervention gene expression data
por: Rau, Andrea, et al.
Publicado: (2013) -
Experimental and quasi-experimental designs for generalized causal inference
por: Shadish, William R.
Publicado: (2002) -
Quantifying Interpreting Types: Language Sequence Mirrors Cognitive Load Minimization in Interpreting Tasks
por: Liang, Junying, et al.
Publicado: (2019)