Cargando…

Sex differences in early and term placenta are conserved in adult tissues

BACKGROUND: Pregnancy complications vary based on the fetus’s genetic sex, which may, in part, be modulated by the placenta. Furthermore, developmental differences early in life can have lifelong health outcomes. Yet, sex differences in gene expression within the placenta at different timepoints thr...

Descripción completa

Detalles Bibliográficos
Autores principales: Olney, Kimberly C., Plaisier, Seema B., Phung, Tanya N., Silasi, Michelle, Perley, Lauren, O’Bryan, Jane, Ramirez, Lucia, Kliman, Harvey J., Wilson, Melissa A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9773522/
https://www.ncbi.nlm.nih.gov/pubmed/36550527
http://dx.doi.org/10.1186/s13293-022-00470-y
Descripción
Sumario:BACKGROUND: Pregnancy complications vary based on the fetus’s genetic sex, which may, in part, be modulated by the placenta. Furthermore, developmental differences early in life can have lifelong health outcomes. Yet, sex differences in gene expression within the placenta at different timepoints throughout pregnancy and comparisons to adult tissues remains poorly characterized. METHODS: Here, we collect and characterize sex differences in gene expression in term placentas (≥ 36.6 weeks; 23 male XY and 27 female XX). These are compared with sex differences in previously collected first trimester placenta samples and 42 non-reproductive adult tissues from GTEx. RESULTS: We identify 268 and 53 sex-differentially expressed genes in the uncomplicated late first trimester and term placentas, respectively. Of the 53 sex-differentially expressed genes observed in the term placentas, 31 are also sex-differentially expressed genes in the late first trimester placentas. Furthermore, sex differences in gene expression in term placentas are highly correlated with sex differences in the late first trimester placentas. We found that sex-differential gene expression in the term placenta is significantly correlated with sex differences in gene expression in 42 non-reproductive adult tissues (correlation coefficient ranged from 0.892 to 0.957), with the highest correlation in brain tissues. Sex differences in gene expression were largely driven by gene expression on the sex chromosomes. We further show that some gametologous genes (genes with functional copies on X and Y) will have different inferred sex differences if the X-linked gene expression in females is compared to the sum of the X-linked and Y-linked gene expression in males. CONCLUSIONS: We find that sex differences in gene expression are conserved in late first trimester and term placentas and that these sex differences are conserved in adult tissues. We demonstrate that there are sex differences associated with innate immune response in late first trimester placentas but there is no significant difference in gene expression of innate immune genes between sexes in healthy full-term placentas. Finally, sex differences are predominantly driven by expression from sex-linked genes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13293-022-00470-y.