Cargando…

Clinical findings and genetic analysis of patients with copy number variants involving 17p13.3 using a single nucleotide polymorphism array: a single-center experience

BACKGROUND: 17p13.3 microdeletions or microduplications (collectively known as copy number variants or CNVs) have been described in individuals with neurodevelopmental disorders. However, 17p13.3 CNVs were rarely reported in fetuses. This study aims to investigate the clinical significance of 17p13....

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Bin, Yu, Donghong, Zhao, Wantong, Wang, Yan, Wu, Xiaoqing, Chen, Lingji, Lin, Na, Huang, Hailong, Xu, Liangpu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9773569/
https://www.ncbi.nlm.nih.gov/pubmed/36544138
http://dx.doi.org/10.1186/s12920-022-01423-5
Descripción
Sumario:BACKGROUND: 17p13.3 microdeletions or microduplications (collectively known as copy number variants or CNVs) have been described in individuals with neurodevelopmental disorders. However, 17p13.3 CNVs were rarely reported in fetuses. This study aims to investigate the clinical significance of 17p13.3 CNVs with varied sizes and gene content in prenatal and postnatal samples. METHODS: Eight cases with 17p13.3 CNVs out of 8806 samples that had been subjected to single nucleotide polymorphism array analysis were retrospectively analyzed, along with karyotyping, clinical features, and follow-up. RESULTS: Eight cases with 17p13.3 CNVs consisted of five fetuses, one aborted embryo and two probands manifested severe congenital defects. The indications of prenatal testing varied considerably for the five fetuses, including ultrasound abnormalities (n = 3), segmental deletions indicated by non-invasive prenatal testing (n = 1), and intellectual disability in the mother of one fetus (n = 1). Of them, two and six harbored copy number gains and losses involving 17p13.3, respectively. The size of the detected 17p13.3 CNVs ranged from 576 kb to 5.7 Mb. Case 1 was diagnosed with 17p13.3 duplication syndrome, and cases 4, 6, and 7 with Miller–Dieker syndrome (MDS). Microdeletions of the 17p13.3 region in two cases (cases 5 and 8) involving YWHAE and CRK, sparing PAFAH1B1, were classified as pathogenic. Case 2 harbored a 576 kb microduplication, encompassing YWHAE and CRK but not PAFAH1B1, which was of maternal origin and considered a variant of uncertain significance. Case 3 carried one 74.2 Mb mosaic duplication of approximately 3.5 on chromosome 17p13.2q25.3, and two deletions at 17p13.3p13.2 and 17q25.3. The karyotype of case 3 was 46,XY,r(17)(p13q25). For five fetuses, only case 2 continued gestation and showed normal development at the age of 15 months; the others were subjected to termination of pregnancy. CONCLUSION: The clinical findings of 17p13.3 microdeletions or microduplications varied among subjects, and 17p13.3 CNVs often differ in size and gene content. Microdeletions or microduplications containing the typical MDS region, as well as the microdeletions involving YWHAE and CRK, could be classified as pathogenic. The clinical significance of small duplications including YWHAE and CRK but not PAFAH1B1 remains uncertain, for which parental testing and clinical heterogeneity should be considered in genetic counseling. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12920-022-01423-5.