Cargando…
Simulation of the Internal Temperature Field and Flow Field in a Double-Layer Sintering Bed
[Image: see text] To meet the requirements of Angang’s blast furnace smelting for sintering output, improve the double-layer sintering process, and determine the appropriate parameters for the double-layer sintering process, this article established a mathematical model and simulated the temperature...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9773940/ https://www.ncbi.nlm.nih.gov/pubmed/36570293 http://dx.doi.org/10.1021/acsomega.2c05857 |
Sumario: | [Image: see text] To meet the requirements of Angang’s blast furnace smelting for sintering output, improve the double-layer sintering process, and determine the appropriate parameters for the double-layer sintering process, this article established a mathematical model and simulated the temperature field in the burden bed and the changing trends of O(2) and CO(2) concentrations in the sintering tail gas during the single-layer and double-layer sintering processes of the sintering machine. The simulation results show that (1) compared with the sintering time of single-layer sintering in the baseline period, the error of the single-sintering model is only about 2.5%, and the model’s accuracy is high. (2) Two combustion zones of double-layer sintering increase O(2) consumption, and the O(2) concentration in the tail gas decreases significantly. (3) The thickness of the upper and lower feeding layers of double-layer oxygen supplement sintering is 650 + 300 mm better than that of 600 + 350 mm. (4) The optimal secondary ignition time is 15 min. |
---|