Cargando…

Electric Spark Deposition of Antibacterial Silver Coating on Microstructured Titanium Surfaces with a Novel Flexible Brush Electrode

[Image: see text] Infection caused by orthopedic titanium implants, which results in tissue damage, is a key factor in endosseous implant failure. Given the seriousness of implant infections and the limitations of antibiotic therapy, surface microstructures and antimicrobial silver coatings have eme...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Kaihui, Zhang, Hao, Gu, Yuyan, Liang, Zhijie, Zhou, Huanyu, Liu, Haojie, Liu, Jiangwen, Xie, Guie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9773945/
https://www.ncbi.nlm.nih.gov/pubmed/36570305
http://dx.doi.org/10.1021/acsomega.2c06253
Descripción
Sumario:[Image: see text] Infection caused by orthopedic titanium implants, which results in tissue damage, is a key factor in endosseous implant failure. Given the seriousness of implant infections and the limitations of antibiotic therapy, surface microstructures and antimicrobial silver coatings have emerged as prominent research areas and have displayed certain antimicrobial effects. Researchers are now working to combine the two to produce more effective antimicrobial surfaces. However, building robust and homogeneous coatings on complex microstructured surfaces is a tough task due to the limits of surface modification techniques. In this study, a novel flexible electrode brush (silver brush) instead of a traditional hard electrode was designed with electrical discharge machining, which has the ability to adapt to complex groove interiors. The results showed that the use of flexible electrode brush allowed silver to be deposited uniformly in titanium alloy microgrooves. On the surface of Ag-TC4, a uniformly covered deposit was visible, and it slowly released silver ions into a liquid environment. In vitro bacterial assays showed that a Ag-TC4 microstructured surface reduced bacterial adhesion and bacterial biofilm formation, and the antibacterial activity of Ag-TC4 against Staphylococcus aureus and Escherichia coli was 99.68% ± 0.002 and 99.50% ± 0.007, respectively. This research could lay the groundwork for the study of antimicrobial metal bound to microstructured surfaces and pave the way for future implant surface design.