Cargando…
Insights on variant analysis in silico tools for pathogenicity prediction
Molecular biology is currently a fast-advancing science. Sequencing techniques are getting cheaper, but the interpretation of genetic variants requires expertise and computational power, therefore is still a challenge. Next-generation sequencing releases thousands of variants and to classify them, r...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774026/ https://www.ncbi.nlm.nih.gov/pubmed/36568376 http://dx.doi.org/10.3389/fgene.2022.1010327 |
Sumario: | Molecular biology is currently a fast-advancing science. Sequencing techniques are getting cheaper, but the interpretation of genetic variants requires expertise and computational power, therefore is still a challenge. Next-generation sequencing releases thousands of variants and to classify them, researchers propose protocols with several parameters. Here we present a review of several in silico pathogenicity prediction tools involved in the variant prioritization/classification process used by some international protocols for variant analysis and studies evaluating their efficiency. |
---|