Cargando…

Read2Tree: scalable and accurate phylogenetic trees from raw reads

The inference of phylogenetic trees is foundational to biology. However, state-of-the-art phylogenomics requires running complex pipelines, at significant computational and labour costs, with additional constraints in sequencing coverage, assembly and annotation quality. To overcome these challenges...

Descripción completa

Detalles Bibliográficos
Autores principales: Dylus, David, Altenhoff, Adrian, Majidian, Sina, Sedlazeck, Fritz J, Dessimoz, Christophe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774205/
https://www.ncbi.nlm.nih.gov/pubmed/36561179
http://dx.doi.org/10.1101/2022.04.18.488678
Descripción
Sumario:The inference of phylogenetic trees is foundational to biology. However, state-of-the-art phylogenomics requires running complex pipelines, at significant computational and labour costs, with additional constraints in sequencing coverage, assembly and annotation quality. To overcome these challenges, we present Read2Tree, which directly processes raw sequencing reads into groups of corresponding genes. In a benchmark encompassing a broad variety of datasets, our assembly-free approach was 10–100x faster than conventional approaches, and in most cases more accurate—the exception being when sequencing coverage was high and reference species very distant. To illustrate the broad applicability of the tool, we reconstructed a yeast tree of life of 435 species spanning 590 million years of evolution. Applied to Coronaviridae samples, Read2Tree accurately classified highly diverse animal samples and near-identical SARS-CoV-2 sequences on a single tree—thereby exhibiting remarkable breadth and depth. The speed, accuracy, and versatility of Read2Tree enables comparative genomics at scale.