Cargando…
Robust Medical Image Colorization with Spatial Mask-Guided Generative Adversarial Network
Color medical images provide better visualization and diagnostic information for doctors during clinical procedures than grayscale medical images. Although generative adversarial network-based image colorization approaches have shown promising results, in these methods, adversarial training is appli...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774564/ https://www.ncbi.nlm.nih.gov/pubmed/36550927 http://dx.doi.org/10.3390/bioengineering9120721 |
Sumario: | Color medical images provide better visualization and diagnostic information for doctors during clinical procedures than grayscale medical images. Although generative adversarial network-based image colorization approaches have shown promising results, in these methods, adversarial training is applied to the whole image without considering the appearance conflicts between the foreground objects and the background contents, resulting in generating various artifacts. To remedy this issue, we propose a fully automatic spatial mask-guided colorization with generative adversarial network (SMCGAN) framework for medical image colorization. It generates colorized images with fewer artifacts by introducing spatial masks, which encourage the network to focus on the colorization of the foreground regions instead of the whole image. Specifically, we propose a novel spatial mask-guided method by introducing an auxiliary foreground segmentation branch combined with the main colorization branch to obtain the spatial masks. The spatial masks are then used to generate masked colorized images where most background contents are filtered out. Moreover, two discriminators are utilized for the generated colorized images and masked generated colorized images, respectively, to assist the model in focusing on the colorization of foreground regions. We validate our proposed framework on two publicly available datasets, including the Visible Human Project (VHP) dataset and the prostate dataset from NCI-ISBI 2013 challenge. The experimental results demonstrate that SMCGAN outperforms the state-of-the-art GAN-based image colorization approaches with an average improvement of 8.48% in the PSNR metric. The proposed SMCGAN can also generate colorized medical images with fewer artifacts. |
---|